2017年6月5日 经过很多年的研究,癌症研究者们开始意识到,癌细胞在某些特殊方面上的行为或许和干细胞非常类似,当暴露于特定的信号下,非特化的细胞就会开始分化。当干细胞分化时,其会从一条单行道开始慢慢变得特化,直至最终死亡,比如乳腺中的干细胞就会转化成为管腔细胞(产生乳汁的工厂),诸如这样的细胞往往寿命有限,癌细胞往往非常像干细胞,并不是因为其会转化成为任何类型的细胞,而表现在发育的模式上,其能够转变成完全相反的方向,不断繁殖和疯狂发展。
近日,来自明尼苏达大学等机构的研究人员通过研究鉴别出了一种关键蛋白bptf,这种蛋白质对于乳腺干细胞发挥正常的功能非常重要;相关研究刊登于国际杂志上,当研究人员通过遗传性或化学性地抑制bptf蛋白后,干细胞就不能维持更新的状态以及具有特殊乳腺细胞的特性了,随后其就会死亡。研究者表示,这项研究让我们非常激动,因为这对于我们发现驱动乳腺癌细胞进展的机制非常关键,我们想通过研究移除癌细胞所具有的干细胞样特性,尤其是其不确定的扩增能力,目前研究人员正在进行检验一种想法,即抑制的药物或许会在癌细胞中能够产生和在干细胞中一样的效应,即促进癌细胞分化使其最终死亡。
当研究者阐明正常细胞如何转变成癌细胞时,他们将研究重点转移到了关注基因表达上,乳腺中的每一个细胞都含有全部的人类基因组,思考如何将心脏细胞转化成为乳腺细胞的一种方法就是每一种细胞类型都会表达完全不同的基因。在乳腺中,运输乳汁的导管结构由两种高度特异性的细胞组成,而且干细胞生境也能够产生上述细胞类型,每一种不同类型的细胞都能够在个体一生的不同时间对不同的基因进行表达。
研究者认为,蛋白质对于维持乳腺干细胞非常必要,其是一种具有特殊功能的蛋白质,而且生物学家认为该蛋白是一种染色质重建因子;本文研究结果表明,bptf是开启染色质并且改变基因表达的调节系统中的一部分,尤其是在乳腺干细胞中,染色质的开启对于干细胞维持“永生”的能力非常重要,其能够产生子代干细胞来帮助维持诸如乳腺细胞等组织的健康,并且还会在个体一生的任何时间段不断进行“添补”,比如当个体处于青春期时,乳腺组织会快速发育,而在孕期时乳腺也会快速发育为乳汁分泌做好准备。
最后研究者dos santos说道,bptf能够维持染色质的“可及性”以及乳腺干细胞的自我更新能力,如今我们知道乳腺干细胞对于蛋白质bptf具有高度的依赖性,下一步我们将通过更为深入的研究来阐明我们是否能够利用这种依赖性来靶向作用乳腺癌细胞的干细胞样程序或机制,从而开发出更多新型的治疗方法。
一时轻信人言语,自有明人话不平。敢于说真话的深空小编给您说新闻。小编整理了半天,给大家带来了这篇文章。下面一起让我们去吃瓜围观吧。牙齿的干细胞可以促进非牙齿器官的再生,比如乳腺。在最近发表在期刊《细胞》的一篇论文中,由苏黎世大学口腔生物学研究所教授蒂米奥斯·米茨亚迪斯领导的研究小组首次证明,从小鼠身上提取的牙源性上皮干细胞移植到乳腺后,可以产生乳腺导管甚至产乳细胞。此类技术有望用于乳腺癌患者的术后组织再生。
成体干细胞产生各种组织特异性细胞群的能力,是医学和牙科研究领域的重要课题。这些细胞可以替代受损的细胞,因此在组织再生上是一个很好的替代传统医学治疗的选择。这甚至可能会让整个组织和器官在未来重新形成。
牙齿干细胞能够再生乳腺
牙源性上皮干细胞能够产生所有类型的牙齿上皮细胞;然而,目前还不清楚这些细胞是否也能产生非牙齿细胞群。研究小组首次证明,从幼鼠不断生长的门牙中分离出的上皮干细胞确实能够在雌鼠体内形成乳腺。
在第一组实验中,在去除所有起源于乳腺的细胞后,研究人员直接将牙源性上皮干细胞和乳腺上皮细胞注射到乳腺正常发育的区域。研究人员使用了先进的遗传、分子和成像工具,可以精确追踪移植到动物乳腺脂肪垫中的牙干细胞。米茨亚迪斯说,“结果表明,牙齿干细胞有助于乳腺的再生,并且能够产生所有的乳腺细胞群,更引人侧目的是,它们还能产生产乳细胞。”
这项研究证明了牙源性上皮干细胞特殊的可塑性,不仅可以生成牙齿组织,还可以生成身体的其他组织。米茨亚迪斯补充说,“这些发现对理解牙齿干细胞再生能力所涉及的细胞和分子机制做出了重大贡献,而且,这些发现还表明了这些特定干细胞群的临床潜力。”
干细胞治疗或可用于乳腺组织再生
在第二组实验中,研究人员只注射牙源性上皮干细胞,不注射乳腺上皮细胞。在这种情况下,牙干细胞也能够形成由分支雏形组成的乳腺导管系统。然而,在一些情况下,这会导致囊肿的形成。来自苏黎世大学口腔生物学研究所的共同作者Pierfrancesco Pagella说,“这种可塑性可能是牙源性上皮干细胞所独有的,因为迄今所检测的所有其他非乳腺上皮细胞从未显示出在没有乳腺上皮细胞支持的情况下产生乳腺导管的能力。”
最严重的病理情况之一是乳腺癌,通常用手术治疗。“我们发现牙源性上皮干细胞可以替代乳腺细胞,这为开发将来或可用于乳房再生的干细胞治疗开辟了新的路径。” 米茨亚迪斯说道。
欲要知晓更多《牙齿干细胞也能生成乳腺细胞 有望用于乳腺癌术后》的更多资讯,请持续关注深空的科技资讯栏目,深空小编将持续为您更新更多的科技资讯。王者之心2点击试玩
AACRl3 (American As.sociation for Cancer Research)2006年给出的定义是:肿瘤中具有自我更新能力并能产生异质性肿瘤细胞的细胞。传统观念认为,肿瘤是由体细胞突变而成,每个肿瘤细胞都可以无限制地生长。但这无法解释肿瘤细胞似乎具有无限的生命力以及并非所有肿瘤细胞都能无限制生长的现象。肿瘤细胞生长、转移和复发的特点与干细胞的基本特性十分相似,因此,有学者提出肿瘤干细胞(tumor stem cell,TSC)的理论。这一理论为我们重新认识肿瘤的起源和本质,以及临床肿瘤治疗提供了新的方向和视觉角度。
目录
概念 实验依据
肿瘤启动细胞
血液TSC
实体瘤干细胞
TSC的特性极强的致瘤能力
TSC与成体干细胞关系
成体干细胞TSC与Bmi1Bmi?
干细胞与TSC有相似的生长调控机制
TSC理论对目前肿瘤临床的影响肿瘤基础与临床
移植技术
结语
图书信息内容简介
图书目录
概念实验依据
肿瘤启动细胞
血液TSC
实体瘤干细胞
TSC的特性 极强的致瘤能力
TSC与成体干细胞关系
成体干细胞TSC与Bmi1 Bmi?
干细胞与TSC有相似的生长调控机制
TSC理论对目前肿瘤临床的影响 肿瘤基础与临床
移植技术
结语
图书信息 内容简介
图书目录
展开 编辑本段概念
实验依据
从20世纪50年代Southam C.等进行的肿瘤细胞自体/异体移植实验到后来众多实验都证实并非每个肿瘤细胞都有再生肿瘤的能力,只有一小部分肿瘤细胞在体外克隆形成实验中可以形成克隆,在异种移植模型中,只有移植人大量的肿瘤细胞才能形成移植瘤,究竟何种细胞行使肿瘤起源细胞(tumor—initiating cell,T—IC)的功能?目前有两种理论解释,一是随机化理论,它认为肿瘤细胞具有同质性,即每一个肿瘤细胞都具有新生肿瘤的潜力,但是能进入细胞分化周期的肿瘤细胞很少,是一个小概率随机事件。而分层理论认为,肿瘤细胞具有功能异质性,只有有限数目的肿瘤细胞具有产生肿瘤的能力,但这些肿瘤细胞再生肿瘤是高频事件。虽然两种理论都认为只有很少数量的肿瘤细胞能再生肿瘤,但是机制是完全不同的。目前的实验结果倾向于第二种解释,即肿瘤组织中存在数量稀少的癌细胞,在肿瘤形成过程中充当干细胞的角色,具有自我更新、增殖和分化的潜能,虽然数量少,却在肿瘤的发生、发展、复发和转移中起着重要作用,由于其众多性质与干细胞相似,所以这些细胞被称为肿瘤干细胞,肿瘤干细胞能不对称产成两种异质的细胞,一种是与之性质相同的肿瘤干细胞,另一种是组成肿瘤大部分的非致瘤癌细胞。AACRl3 (American As.sociation for Cancer Research)2006年给出的定义是:肿瘤中具有自我更新能力并能产生异质性肿瘤细胞的细胞。
肿瘤启动细胞
(tumor?initiating cell,T?IC) 肿瘤细胞自体同源移植实验表明,移植瘤细胞数大于106个以上,才能形成肿瘤[1]。体外培养骨髓瘤、人肺癌、卵巢癌及神经母细胞瘤细胞也发现,仅极少细胞能形成集落[2,3]。这些数量极其稀少,却在肿瘤发生中起主要作用的肿瘤细胞亚群,被称为T?IC。 1.2TSC
血液TSC
急性髓性白血病的研究表明[4,5],不同的白血病细胞亚群移植到严重联合免疫缺陷病的裸鼠,其肿瘤细胞成瘤能力差异巨大。占总数0.2%~1%的白血病细胞有稳定持续的形成肿瘤克隆的能力,具备干细胞特性,被称作白血病干细胞。
实体瘤干细胞
少数睾丸癌细胞含有与不成熟胚胎细胞同样的表面标志,提示实体瘤中TSC可能存在 [6]。首先证实实体瘤中TSC存在的是在2003年,Clarke的研究小组从乳腺癌中分离出了乳腺癌干细胞[7]。随即,星形细胞瘤、成神经管细胞瘤与胶质母细胞瘤等脑肿瘤干细胞先后分离成功[8]。
编辑本段TSC的特性
极强的致瘤能力
TSC数目极其稀少,成瘤能力较普通肿瘤细胞大数百倍以上[7] ,是肿瘤发生、发展与维持的基础。 2.2自我更新并多向分化 肿瘤中部分细胞多向分化的现象在临床观察中很早就有发现:前列腺瘤经雄激素治疗后可以变成小细胞癌、鳞癌或者是癌肉瘤;生殖细胞肿瘤也可以转变为非生殖细胞肿瘤的类型,包括肉瘤、癌、神经外胚层肿瘤以及造血组织恶性肿瘤[9] ;大部分混合瘤中虽然肿瘤细胞有各种不同的组织形态,但却具有遗传同源性,说明它们来源于一个共同的祖细胞[10];单个大鼠结肠腺瘤细胞注射到小鼠,可生成结肠所有类型细胞,如黏膜细胞、柱状细胞、内分泌细胞和未分化的肿瘤细胞。 多发性骨髓瘤中得到的TSC属于B淋巴细胞亚群,能自我更新并分化为浆细胞和肿瘤细胞[11]。乳腺癌细胞与脑肿瘤TSC移植到裸鼠,可以生成原来肿瘤的所有细胞类型,说明TSC具备自我更新与多向分化能力 [7] 。
TSC与成体干细胞关系
3.1肿瘤细胞突变最早发生于干细胞 干细胞与TSC具有无限增殖相似的生物学特性,只需突变获得过度增殖能力, 就可以转化成为肿瘤[12];干细胞比分化细胞周期性更新快,寿命长,突变更容易累积。干细胞是突变的靶。 3.2表面标记表明TSC来源于成体干细胞 由于造血干细胞研究进展,白血病干细胞的分离和表面标记测定较早开始。目前研究发现,所有几乎白血病干细胞与造血干细胞一致,均为CD34+ [13],如所有的急性单核细胞性白血病(除急性早幼粒细胞性白血病)[4,5] 干细胞都为[CD34+, CD38?]。 白血病细胞为[CD34+CD38-Thy?1-]。急性髓性白血病细胞频繁发生染色体易位(8;21),形成AML1?ETO嵌合转录物。患者缓解后骨髓中有一部分干细胞仍能合成AML1?ETO融合蛋白,但这部分干细胞及其子代不能诱发白血病,在体外能分化为正常的红细胞系,细胞表面标记也与正常造血干细胞几乎完全一致,为[CD34+CD38-Thy?1+]。说明易位最早发生于正常造血干细胞,突变在造血干细胞的亚群或子代中发生,导致白血病的发生。根据白血病干细胞的标记与正常造血干细胞的不同,突变大约发生于Thy?1-的祖细胞或丢失Thy?1-的造血干细胞[4,14,15]。 其他成体干细胞分离与表面标记研究不够深入,目前难以比较TSC与成体干细胞的表面标记。动物实验发现,乳腺癌干细胞标记CD44+在幼稚细胞、祖细胞或干细胞中都是经常见到的[7];而64位乳腺癌患者的观察证实,大部分患者的肿瘤细胞表型与干细胞表型相同[CK8+,14+,18+;Vi? mentin+,EGFR+] [16];对未成年患者脑肿瘤研究表明,TSC标记CD133、musashi?1、 Sox2、melk、 PSP、 Bmi?1和nestin,与神经干细胞完全一致[17]。
编辑本段成体干细胞TSC与Bmi1
基因参与正常造血过程,其功能障碍与AML有关。Bmi?1基因敲除的小鼠干细胞移植入免疫力摧毁的小鼠,干细胞可以短期产生血细胞 ,8周后,移植细胞基本消失。说明Bmi?1基因对正常血液干细胞的自我更新是必要的[18,19]。
Bmi?
1基因对白血病细胞的产生也是必要的。Meis1a和Hoxa9癌基因导入小鼠骨髓细胞可以产生AML模型。把Meis1a和Hoxa9癌基因导入正常小鼠与BMI?1基因失活小鼠,都可以产生白血病细胞。但是Bmi?1基因失活小鼠的白血病细胞移植入免疫缺陷小鼠后不能再产生白血病细胞。所以,Bmi?1基因对白血病干细胞的自我更新和维持都是必要的[20]。
干细胞与TSC有相似的生长调控机制
Wnt、SHH(sonichedgehog)、Notch途径,也往往调控干细胞的生长分化,提示机体一生中细胞的生长分化由相似的生长调控机制调节,其异常可引起细胞过度增殖,导致肿瘤。 3.5TSC与干细胞有相同的起源 我们知道,侧脑室室管膜下层与海马齿状回是神经干细胞的起源地。通过神经祖细胞与其他祖细胞癌基因神经纤维瘤病1与p53抑癌基因突变,可以制造小鼠脑肿瘤模型。这些模型小鼠产生不同的脑肿瘤。影象学研究表明,这些脑肿瘤虽然可以在广泛的脑内区域产生,但这些肿瘤都起源于侧脑室与海马。
编辑本段TSC理论对目前肿瘤临床的影响
肿瘤基础与临床
TSC理论可以解释临床上肿瘤对放射治疗与化疗药物治疗不敏感的原因。正常干细胞拥有排出化疗药物的分子泵,对化疗药物敏感性低。TSC与正常干细胞一样,比较分化细胞有更好抵御化疗与放射治疗的能力[21]。 TSC理论认为,肿瘤一开始就有转移能力,只要TSC到达一个新的区域,转移将不可避免。 4.2TSC理论对肿瘤诊断与预后判断的影响 慢性粒细胞白血病中肿瘤细胞的CD38阳性率大于20%的患者,其病情往往处于进展期;而CD38阴性的患者预后较好 [22] 。 恶性程度高的成神经管细胞瘤与胶质母细胞瘤比较恶性程度较低的星形细胞瘤含TSC的比例要高一些[14]。Clarke指出,极度恶性的乳腺癌,其TSC的比例可达到肿瘤细胞总数的25%。 前列腺早期干细胞突变形成的肿瘤会表达一些神经内分泌标志,象嗜铬粒蛋白A(CgA),但不表达特异性前列腺抗原(PSA) ;源于分化晚期的前列腺干细胞产生的肿瘤细胞表达PSA,而不是CgA。以此类推,源于分化中期干细胞的前列腺癌会同时表达CgA和PSA[23]。 4.3肿瘤治疗的靶—TSC 传统的化疗药物主要是通过筛选能杀灭分裂中肿瘤细胞的化合物。TSC理论认为,只要存在TSC,肿瘤就不可能治愈。所以,肿瘤治疗的焦点是杀伤TSC。但是TSC通常处于静止状态,只是在增殖时才开始快速分裂产生子细胞,所以,按照传统方法筛选出来的肿瘤治疗药物与杀灭TSC的要求差异巨大。针对TSC治疗肿瘤已经取得一定的进展:在80%前列腺癌中表达的特有标记前列腺干细胞抗原,是前列腺癌治疗很好的靶点。静脉注射前列腺干细胞抗原单克隆抗体治疗前列腺癌,可以延长荷瘤小鼠的存活时间,并基本抑制前列腺癌肺转移[24];针对肿瘤干细胞的重要位点?Bmi1进行肿瘤免疫治疗的研究也正进行中
移植技术
使用分子芯片技术,可分析TSC与他们相应成体干细胞基因表达特征的不同。利用这种差异,可能会出现既直接针对TSC,又能保护成体干细胞的治疗手段; 自体造血干细胞移植中,通过TSC的特征标记,可以去除污染的TSC。
结语
目前,在血液肿瘤、乳腺癌、脑肿瘤及前列腺癌中,TSC研究取得了一定的进展。但是,各种TSC的鉴定与分离、TSC特征以及TSC与成体干细胞的确切关系,迫切需要通过一些严谨而富有想象力的实验进行探索。TSC理论是肿瘤基础与临床理论上的突破,必将对肿瘤发生、发展的了解,以及肿瘤的临床诊断、治疗都带来深远的影响
编辑本段图书信息
书 名: 肿瘤干细胞 作 者:窦骏 出版社: 东南大学出版社 出版时间: 2009年07月 ISBN: 9787564117269 开本: 16开 定价: 42.00 元
内容简介
《肿瘤干细胞》较全面介绍了干细胞与肿瘤、干细胞与肿瘤干细胞、肿瘤与干细胞及肿瘤干细胞间的分子联系、肿瘤干细胞的生物学特性、肿瘤干细胞的来源、肿瘤干细胞研究的演进、肿瘤干细胞研究现状、常见的肿瘤干细胞研究、肿瘤干细胞研究面对的挑战与任务等方面内容,详细描述了国内外科研人员近年来对肿瘤干细胞的研究概况与进展,并提供了有关肿瘤干细胞研究的新技术和新信息,内容较丰富,具有创新性、科学性、实用性和可读性。
图书目录
第一章 肿瘤干细胞绪论 第一节 干细胞与肿瘤干细胞 第二节 肿瘤干细胞的生物学特性 第三节 肿瘤干细胞的细胞起源 第四节 肿瘤干细胞的研究现况与展望 第二章 肿瘤干细胞研究演进 第一节 肿瘤研究历史 第二节 干细胞研究历史与演进 第三节 肿瘤干细胞研究演进 第三章 肿瘤与干细胞生物学特性 第一节 肿瘤生物学特性 第二节 干细胞生物学特性 第三节 肿瘤与干细胞共有的生物学特性 第四节 肿瘤干细胞的生物学特性 第四章 肿瘤与干细胞及肿瘤干细胞间的分子联系 第一节 肿瘤、干细胞、肿瘤干细胞相关的信号传导途径 第二节 肿瘤、干细胞、肿瘤干细胞间的分子联系研究展望 第五章 肿瘤干细胞特征性表面标记 第一节 肿瘤干细胞特征性CD分子研究 第二节 肿瘤干细胞特征性ATP结合框转运体 第三节 肿瘤干细胞其他特征性分子研究 第六章 肿瘤干细胞体外培养特性 第一节 脑神经胶质瘤干细胞体外培养特性 第二节 卵巢癌干细胞体外培养特性 第三节 消化道肿瘤干细胞体外培养特性 第四节 乳腺癌肿瘤干细胞体外培养特性 第五节 其他肿瘤干细胞体外培养特性 第七章 SP细胞及肿瘤干细胞 第一节 SP细胞来源及分布 第二节 SP细胞的特性及与肿瘤干细胞的关系 第三节 影响SP细胞检测的因素及展望 第八章 肿瘤干细胞在动物模型致瘤性研究 第一节 肿瘤干细胞在NOD/SCID小鼠致瘤性研究 第二节 如何评价肿瘤干细胞在动物模型中的致瘤性 第九章 肿瘤干细胞的放化疗抵抗及机制的研究进展 第一节 耐药相关蛋白的表达 第二节 肿瘤干细胞耐药相关的信号通路 第三节 肿瘤干细胞介导放化疗抵抗的其他相关机制 第四节 结语 第十章 肿瘤干细胞微转移 第一节 常见的肿瘤干细胞早期微转移 第二节 肿瘤干细胞早期微转移的机制 第三节 如何诊断肿瘤干细胞早期微转移 第十一章 肿瘤干细胞的早期诊断 第一节 肿瘤干细胞的早期诊断方法 第二节 血液系统肿瘤干细胞的早期诊断 第三节 实体瘤肿瘤干细胞的早期诊断 第四节 神经系统肿瘤干细胞的早期诊断 第十二章 造血系统肿瘤干细胞 第一节 白血病干细胞起源 第二节 白血病干细胞的生物学特性 第三节 各系白血病中的白血病干细胞 第四节 存在的问题和展望 第十三章 前列腺癌干细胞 第一节 人前列腺生物学、病变及病理学改变 第二节 前列腺上皮干细胞 第三节 前列腺癌干细胞 第四节 前列腺中干细胞示踪 第五节 PCSC对前列腺癌的临床影响 第十四章 黑色素瘤与黑色素瘤干细胞 第一节 黑色素干细胞与黑色素瘤干细胞 第二节 黑色素瘤干细胞的生物学特性 第三节 展望 第十五章 脑胶质瘤干细胞 第一节 脑神经干细胞研究 第二节 脑胶质瘤干细胞研究 第三节 脑神经干细胞和脑胶质瘤干细胞的关系 第四节 脑胶质瘤干细胞在神经系统肿瘤中的重要意义 第五节 展望 第十六章 卵巢癌肿瘤干细胞 第一节 卵巢结构和发育概况 第二节 卵巢肿瘤干细胞的发现和来源 第三节 卵巢癌干细胞分离鉴定、培养及标志研究 第十七章 乳腺癌干细胞 第一节 乳腺干细胞与乳腺癌干细胞 第二节 乳腺癌干细胞与信号转导异常 第十八章 癌干细胞研究面对的挑战与任务 第一节 全面认识癌干细胞生物学特性 第二节 建立特异性方法鉴定癌干细胞 第三节 癌干细胞靶向治疗的策略 参考文献
功能基因组学方法可以克服阻碍癌症药物开发的局限性,如缺乏确定可靠的靶点以及临床疗效差强人意。在这里,我们对来自30种癌症类型的324个人类癌细胞系进行了基因组规模的CRISPR-Cas9筛选,并开发了一个数据驱动框架,以优先选择癌症治疗方案。我们将细胞适应度效应与基因组生物标志物和药物开发的靶标易用性结合起来,系统地优先考虑已定义的组织和基因型中的新靶标。我们证实了我们最有希望的依赖之一,沃纳综合性ATP依赖解旋酶(Werner syndrome ATP-dependent helicase),作为多个癌症类型与微卫星不稳定的一个关键靶标。我们的分析提供了癌症依赖关系的资源,生成了一个框架来优先考虑癌症药物靶标,并提出了具体的新靶标。本研究中描述的原理可以为药物开发的初始阶段提供信息,为新的、多样化和更有效的癌症药物靶标组合做出贡献
患者肿瘤的分子特征影响临床反应,可用于指导治疗促进更有效的治疗和降低毒性。然而,大多数患者并没有得益于这种靶向治疗,部分原因是对候选靶点的了解有限。在癌症药物的开发中,缺乏疗效是由于90%的损耗率造成的,而且用于新靶点的分子药物依旧有限。有效识别和优先考虑肿瘤靶点的无偏策略可以扩大靶点的范围,提高成功率,并加快新癌症疗法的开发。
利用sgRNA文库的CRISPR-Cas9筛选已被用于研究基因功能及其在细胞适应性中的作用。基于crispr - cas9的基因组编辑具有很高的特异性,可以生成空等位基因,从而改变外显表型。在这里,我们提出了324个癌细胞系的基因组规模的CRISPR-Cas9适应度筛选和一项综合分析,使候选癌症治疗靶点的优先化成为可能(图1a),我们通过识别沃纳综合征ATP依赖解旋酶(WRN)作为微卫星不稳定性(MSI)肿瘤的靶点来说明这一点。
为了全面分类肿瘤细胞适配性( 全文的适应性都是这个意思:为细胞生长或生存所需的基因 ),我们对339个癌细胞系进行了941个CRISPR-Cas9适应度筛选,目标基因为18009个。遵循严格的质量控制,最终的分析包括324细胞系来自30个不同的癌症类型,在19个不同的组织。
这些细胞系是高度基因组注释细胞系的细胞模型集合的一部分,广泛代表患者肿瘤的分子特征,包括常见的癌症(如肺癌,结肠癌和乳腺癌)和特定未满足临床需求的癌症( 如肺癌和胰腺癌)。对来自这324个细胞系的筛选数据的分析表明,在分类必需和非必需基因时具有高灵敏度,特异性和精确性,并且结果不受实验因素的偏倚。
在 特定分子或组织学环境中细胞适应性所需的基因 (这个就是文中说的背景依赖性核心基因)可能编码有利的药物靶标,因为在健康组织中诱导毒性作用的可能性降低。 相反,大多数测试细胞系常见或在癌症类型中常见的适合度基因(分别称为泛癌或癌症类型特异性核心适应性基因)可能参与细胞的基本过程并具有更大毒性。 因此,重要的是区分特定背景的适应性基因和核心适应性基因。
我们在每个细胞系中鉴定了1,459个适合度基因。 总共有41%(n = 7,470)的所有靶基因在一种或多种细胞系中诱导了适应性效应,并且这些基因的大多数(83%)在不到50%的测试细胞系中诱导了依赖性(图1b)。 为了识别核心适应性基因,我们开发了一种统计方法,即 自适应最优模型(ADaM) ,以自适应地确定基因被分类为核心适合度基因所需的最小数量的依赖细胞系(图1c)。 被定义为13种癌症类型中至少12种(也是适应性确定的)的核心适应性的基因被归类为泛癌核心适应性基因。 这产生了866个癌症类型特异性和 553 个泛癌症核心适应性基因。
在使用ADaM鉴定的泛癌核心适应性基因中,399先前被定义为必需基因,125是参与必需细胞过程的基因。其余132(24%)个基因是新发现的,并且在细胞管家基因和途径中也显着富集。与先前鉴定的参考核心适合度基因组相比。我们的泛癌核心适应度基因组显示更多基因过程中涉及的基因(中位数= 67%,相对于之前发表的基因组分别为28%和51%),而背景依赖性基因具有相似的假设发现率(FDRs)(取自先前的研究)。血癌细胞系具有最独特的核心适应性基因谱(31个独有的核心适应度基因)。癌症类型特异性核心适应性基因通常在匹配的健康组织中高度表达,与其在基本细胞过程中预测的作用一致,并表明如果用作靶标它们显示出潜在的毒性。值得注意的是, 五种基因在单一癌症类型中是核心适应性,并且在匹配的正常组织中基础水平低或不表达,这表明它们可以在这些组织中诱导癌细胞特异性依赖性。
总的来说,使用统计学方法,我们改进和扩展了我们对人类核心适应性基因的现有知识,并鉴定了具有高毒性可能性的基因,因此代表了不太有利的治疗靶点。 此外,由于拥有大规模的数据集,我们现在可以定义背景依赖适应性基因(每个癌症类型的中位数n = 2,813个基因),其中许多具有与核心适应度基因相似或更强的失去适应性效应。
为了从我们的特定背景特定适应度基因列表中提名有希望的治疗目标,我们开发了一个计算框架,它整合了多种证据,为每个基因分配了一个目标优先级分数,范围0-100,并生成了候选的候选列表对于个体癌症类型或泛癌症候选者。为了排除由于潜在毒性而可能是不良靶标的基因,核心适合度基因被评为“0”。对于每个基因,70%的优先级得分来自CRISPR-Cas9实验证据,并根据适应度效应大小,适应性缺陷的显著性,目标基因表达,目标突变状态和其他证据,对依赖细胞系进行均值评估。其余30%的优先级分数是基于与靶标依赖性相关的遗传生物标记物的证据以及靶标在患者肿瘤中被体细胞改变的频率。对于生物标志物分析,我们进行了方差分析(ANOVA)(图2)以测试适合度基因与484种癌症驱动事件(151种单核苷酸变体和333种拷贝数变异体)或MSI之间的关联,在每种癌症类型中都有足够的大样本(n≥10细胞系)。我们基于针对具有批准或临床前癌症化合物的目标计算的得分(扩展数据图5c和补充表5)得出优先级评分阈值(分别为泛癌和癌症类型特异性分析的 55和41 )。
我们共确定了628个独特的优先目标,包括92个泛癌和617个癌症类型特定目标。 在癌症类型中,优先目标的数量变化大约三倍,中位数为88个目标。 大多数癌症类型的优先目标(n = 457,74%)仅在一种(56%)或两种(18%)癌症类型中被识别,强调了它们的背景特异性。 在癌症类型特异性分析中也发现了最优先的泛癌靶点(88%)。 仅在泛癌症分析中确定的11个优先目标通常包括在来自多种癌症类型(例如,CREBBP和JUP)的一小部分细胞系中发生的依赖性或在有限数量的癌症类型中发生的依赖性。 可用细胞系阻止进行癌症类型特异性分析(例如,黑素瘤中的SOX10)。
在628个优先目标中,120个(19%)与使用具有高显着性和大效应大小(定义为A类靶标)的ANOVA鉴定的至少一种生物标志物相关,因此这些蛋白质对于药物开发特别有利。 例如,PIK3CA是乳腺癌,食道癌,结肠直肠癌和卵巢癌中的A类靶标; PI3K抑制剂正在临床开发用于PIK3CA13突变的癌症。 使用渐进不那么严格的显着性阈值扩展了目标,其中至少一个生物标志物关联由ANOVA确定,其被定义为B类(n = 61,10%),其次是C类(n = 117,19%)目标,一些 在多种癌症类型中鉴定出来的。 总之,这些结果强调了数据驱动的定量框架通过组合来自多种细胞系的CRISPR-Cas9筛选数据和相关基因组特征来确定靶标优先级的潜力。
在目前的药物开发策略的基础上,目标在药物干预的适用性方面各不相同,这为目标选择提供了依据。 使用目标易处理性评估来开发小分子和抗体,我们以前将每个基因分配到10个易处理桶中的1个(1表示最高的易处理性)。 我们将628个优先目标与其可控性交叉引用,并将它们分为三个易处理组。
可追踪性组1(桶1-3)包括临床或临床前开发中批准的抗癌药物或化合物的靶标,并包括40个独特的优先目标,例如乳腺癌中的ERBB2,ERBB3,CDK4,AKT1,ESR1,TYMS和PIK3CB以及PIK3CA。 ,IGF1R,MTOR和ATR在结直肠癌中的表达。在这40个优先目标中,20个具有至少一种针对癌症类型开发的药物,其中靶标被确定为优先,而其余20个靶标具有已经用于或开发用于治疗其他癌症类型的药物,提供重新利用这些药物的机会。第1组中的三分之一优先目标具有A类生物标志物,表明它们是非常理想的目标。一个例子是CSNK2A1,它由结直肠癌细胞系中高度显着的适合度基因CSNK2A1编码,扩增含有FLT3和WASF3的染色体片段(P = 6.65×10-6,玻璃△> 2.9)并被靶向silmasertib。具有标记的第1组中的其他优先目标显示ERBB2扩增时存在ERBB2或ERBB3依赖性,ASXL扩增食管癌细胞系中CDK2依赖性,PIK3CA突变存在时PIK3CA依赖性和PTEN乳腺癌细胞系中PIK3CB依赖性突变。
可追踪性组2(桶4-7)在临床开发中包含277个没有药物的优先目标,但有证据支持目标易处理性。其中,18%具有A类生物标志物,包括KRAS依赖于KRAS突变细胞系,USP7依赖于APC野生型结肠直肠细胞系,KMT2D依赖于乳腺癌细胞系,扩增含有PPM1D和CLTC的染色体片段和MYI扩增的骨和胃癌细胞系中的TRIAP1依赖性。值得注意的是,我们观察到具有MSI和泛癌的结肠直肠和卵巢细胞系中的A类生物标记物依赖于WRN。在第2组中与生物标志物无关的优先目标中,GPX4是多种癌症类型的靶标。对GPX4抑制的敏感性与上皮 - 间充质转变相关,并且我们观察到与GPX4依赖性细胞系中的上皮 - 间质转化相关的标志物的差异表达。这表明我们的目标优先级方案的未来改进如何能够捕获与扩展的分子特征集相关的优先目标,包括基因表达,染色质修饰和分化状态。
最后,第3组(第8-10栏)包括311个优先目标,这些目标没有任何支持或缺乏可以告知可行性的信息; 该组显着富含转录因子。 具有A类生物标志物的组3中的优先目标的实例包括乳腺癌中的FOXA1和GATA3,血液学和淋巴癌中的MYB,卵巢癌中的STX5和神经母细胞瘤细胞系中的PFDN5。
易处理性组1中的优先目标富含蛋白激酶,突出了针对这类目标的药物开发的主要焦点,与第2组和第3组相比,其包括功能更多的多样化靶组。 第2组中的目标最有可能通过常规方式新颖且易于处理,因此代表了药物开发的良好候选者。 较新的治疗方式,如蛋白水解 - 靶向嵌合体,可能会增加适合药物干预的蛋白质的范围,以包括第3组中的目标。总体而言,我们的框架提供了数据驱动的优先治疗目标列表,这些目标将是 癌症药物的发展。
为了证实我们的目标优先级策略,我们研究了WRN解旋酶作为MSI癌症的有希望的靶标。 WRN是五种RecQ家族DNA解旋酶之一,是唯一一种同时具有解旋酶和外切核酸酶结构域,并且在DNA修复,复制,转录和端粒维持中具有不同的作用。 MSI表型是由于MMR途径基因的沉默或失活导致的DNA错配修复(MMR)受损引起的。 MSI与高突变负荷相关,发生在20多种肿瘤类型中,常见于结肠癌,卵巢癌,子宫内膜癌和胃癌(3-28%)。
WRN的依赖性与泛癌ANOVA中的MSI以及结肠癌和卵巢癌细胞系的分析密切相关。 大多数MSI的子宫内膜和胃癌细胞系依赖于WRN; 然而,由于样本量小,与MSI的关联不显着(对于胃)或未进行测试。 MSI在许多其他肿瘤类型中是罕见的(<1%),例如肾,黑素瘤和前列腺癌,并且大多数(测试的5个中的4个)来自这些组织的MSI细胞系不依赖于WRN。 其他经过测试的RecQ家族成员(BLM,RECQL和RECQL5)与MSI细胞系中的适应性基因无关。 对MMR途径基因的非同义突变,启动子甲基化和纯合缺失的集中分析证实了WRN依赖性与MLH1启动子的高甲基化或MSH6突变之间的显着关联; 以及表观遗传调节因子MLL2(也称为KMT2D)的突变。
为了进一步验证WRN,我们进行了基于CRISPR的共竞争测定,其中比较了WRN敲除与野生型细胞的相对适应度。与来自结肠癌,卵巢癌,子宫内膜癌和胃癌的六种MSI细胞系中的野生型细胞相比,使用四种单独sgRNA的WRN敲除降低了WRN敲除的适应性。相比之下,来自这四种组织的所有微卫星稳定细胞系没有差异。一致地,WRN在克隆形成测定中对MSI细胞具有选择性的基础。值得注意的是,WRN敲除对细胞适应性具有有效影响,其效应大小与核心适应度基因相似。此外,我们从系统RNA干扰筛选中挖掘数据并确认MSI癌细胞系中的WRN依赖性,并证实通过RNA干扰的WRN下调强烈地损害了MSI HCT116细胞中的生长,从而在正交实验系统中提供了验证。尽管MMR缺乏与WRN依赖性之间存在很强的相关性,但在微卫星稳定的SW620细胞系中敲除MLH1并未诱导WRN依赖性;相反,HCT116细胞与含有MLH1和/或MSH3的染色体互补(以恢复其表达和纠正MMR缺陷) - 并不能恢复WRN敲除的效果。
为了确定适应性损失效应是否对WRN具有选择性并确定药物靶向的潜在策略,我们使用野生型或亚型Wrn的亚型(对我们使用的WRN sgRNA具有抗性)进行功能性拯救实验 )外切核酸酶(E78A)或解旋酶(R799C或T1052G)结构域中的突变会损害蛋白质功能。 野生型或核酸外切酶缺陷型Wrn的表达拯救了MSN细胞中WRN的敲除,而解旋酶缺陷型Wrn的表达导致无(R799C)或弱(T1052G)拯救。 因此, WRN的解旋酶活性是必需的,并且是可用于治疗靶向的重要结构域。
为了评估MSI细胞对WRN消耗的体内敏感性,我们在HCT116细胞中开发了多西环素诱导型WRN sgRNA系统。 在小鼠中皮下移植表达WRN sgRNA的HCT116细胞后,用强力霉素治疗导致已建立肿瘤的显着生长抑制和增殖细胞数量的减少。 这些发现证实WRN是维持MSI结肠直肠癌细胞体内生长所必需的。
参考文献:
Behan F M, Iorio F, Picco G, et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens[J]. Nature, 2019, 568(7753): 511.
本文地址:http://www.dadaojiayuan.com/jiankang/77735.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
下一篇: 女人是从哪个年龄开始色起来呢