最近,美国耶鲁大学和哈佛大学的科学家合作,为一种细菌重新编写了完整的基因组编码,并提高了其抗病毒能力。
“这是第一次从根本上改变了遗传密码。”论文共同高级作者、耶鲁大学分子、细胞与发育生物学副教授法伦艾萨克斯说,“创造一个有着新基因编码的生物,这让我们能利用许多强有力的方法来扩展生物功能的范围。”
蛋白质是由dna指令所编码,并由20种氨基酸所构成,在细胞中执行多种重要的功能作用。氨基酸由4个核苷酸组合成的整套64个三联体编码,这4个核苷酸包含了dna的主体部分。这些三联体(包含3个核苷酸的单元)叫做密码子,就是生命的基因字母表。
本研究由艾萨克斯和论文合著者、哈佛医学院的乔治?切尔奇共同负责。研究中,他们改变了生物学的基本规则,探索能否替换自然生物的某些密码子或整个基因组字母,然后再引入全新字母创造出自然界没有的氨基酸。
实验中,研究人员替换了大肠杆菌的一个密码子,删除了其本身固有的停止标记,该停止标记可终止蛋白质合成。他们将“停止”密码子进行了修改,使之编码了一种新型氨基酸,并以“即插”方式插入到基因组中。新基因组能限制病毒用来感染细胞的一种天然蛋白质的生产,从而让细菌拥有了抵抗病毒感染的能力。
创造一种基因组重编码的生物,使其造出强大的新型蛋白质用于各种目的:从对抗疾病到制造新材料,提高了研究人员改造自然的能力。本研究标志着人们首次能改变一个生物整个基因组的全部基因编码。
艾萨克斯说,本研究为把重编码细菌变成“活制造厂”搭建了广阔舞台,以生物制造方式创造出新型“特异”蛋白质和高分子聚合物,而这些新型分子为新一代材料设计、纳米结构、治疗方法及药物递送工具奠定了基础。“由于基因编码是通用,本研究也为重新编程其他生物的基因组带来了光明前景,并对生物技术行业带来巨大的影响,有可能开辟出全新的研究与应用之路。”
总编辑圈点
包括人在内的各种生物主导着世界。而让生物千差万别,世界丰富多彩的,正是基因。科学家进行基因研究、破译基因组密码的最终目的,就是为了有朝一日能够自如地改写、甚至编排这个世界上最神奇和复杂的密码。如今美国科学家在这一领域占得先机,第一次从根本上改变了遗传密码。可以说,这是人类有能力对生物遗传密码重新改写的重要证明。如果有一天真正拥有了“上帝之手”,对人类和世界而言到底是喜是忧?而这双“手”又是否真的无所不能?这一切真让人既憧憬又紧张。
(1)锌指核酸内切酶(zinc finger endonuclease,ZFN):是第一代人工核酸内切酶
(2)类转录激活因子效应物核酸酶(transcription activator-like effector nuclease,TALEN):第二代人工核酸酶。
(3)Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)9 第三代人工核酸内切酶(前两代就是ZFN和TAILEN)。
(4)人工核酸内切酶(engineered endonuclease,EEN)
Jennifer Doudna和Emmanuelle Charpentier重在CRISPR/Cas9技术的基础研究,而张峰和George Church在各种人类细胞中的应用方面贡献较多,其中张锋对CRISPR/Cas9技术方面的改进也有突出的贡献。
Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR) :是在细菌中发现的有规律成簇又带间隔的短回文序列,可以帮助细菌抵抗噬菌体的入侵,是细菌针对噬菌体的获得性免疫。 CRISPR-Cas系统是原核生物的一种天然免疫系统 。某些细菌在遭到病毒入侵后,能够把病毒基因的一小段存储到自身的 DNA 里一个称为 CRISPR 的存储空间。当再次遇到病毒入侵时,细菌能够根据存写的片段识别病毒,将病毒的DNA切断而使之失效。
CRISPR locus是由几个原件构成,如下图:一开始是个反向转录的RNA,是特异的非编码RNA,可以和重复序列部分互补(trancrRNA,橙色矩形),后面是各种cas基因(箭头表示),接着是CRISPR排列(棕色的菱形是重复序列,彩色的是间隔)。而这些间隔序列是细菌从噬菌体DNA中获得的遗传序列:当噬菌体感染细菌,细菌激活相关的cas基因——Cas1,Cas2,和Csn2,将其中新的间隔序列整合到自身的CRISPR arry中。一旦获得新的间隔序列以后,新的spacer就会出现在pre-crRNA中,此时tracrRNA与不同的SPACER互补,在RNaseIII的作用下,产生crRNA,进一步在其他未知的核酸酶的作用,剪切crRNA的5'端, 使得引导序列长为20nt 。如果噬菌体注入DNA,那么这个免疫系统将被激活,来干扰剪切噬菌体DNA,起到获得性免疫作用。
经过广谱检测,人们发现了三种主要的CRISPR系统,它们由CRISPR-associated (Cas)基因、非编码rna和一组独特的重复元素(直接重复)组成,而这些重复序列则由来自外源性DNA靶点(即原间隔体)的短可变序列直接间隔开来;重复序列+间隔序列=CRISPR RNA (crRNA) array。在有DNA靶点的情况下,每一个间隔序列都有一个前间区序列邻近基序(PAM——Ⅱ型系统的PAM基序为 5-NGG-3 )。
II型CRISPR系统是最具特征的系统之一,它由核酸酶Cas9、编码引导rna的crRNA阵列和有助于将crRNA阵列加工成离散单元的所需辅助反式激活crRNA (tracrRNA)组成
S. pyogenes亚型II-A Cas9(1368个氨基酸)是基因组工程中研究最多、使用最多的Cas9版本。其优势是:氨基酸序列相对较小,方便操作,且只是需要一个DNA内切酶Cas9来对与sgRNA20个互补碱基的带有PAM结构的DNA进行剪切。剪切后是DNA产生平末端的DSB(双链断裂),然后在进行非同源的末端连接(NHEJ)过程中,容易随机插入或者删除或者替换。或者进行高保真的同源定向修复(HDR),修复DNA。
CRISPR RNA (crRNA) array,编码gRNA,再加上tracrRNA,则可达到定位+编辑的功能 ,gRNA用于引导,tracrRNA用于结合靶点。把crRNA和tracrRNA合在一起,成为了single-guide RNA,即 sgRNA ,而通过修改tracrRNA的序列,在理论上可以on-target任何目的靶点。
这项技术主要由sgRNA定位到一个基因位点上,由Cas9酶在该位点进行DNA双链的切割,切割导致DNA修复通路的激活,使得其它的碱基加入进切割的位点,造成frameshift突变,使得基因无法被表达成功能性蛋白。
Cas9造成基因不被表达是由NHEJ修复通路引起,然而,Cas9造成的DSB并不一定会引发NHEJ,因为DSB end的碱基并没有任何损坏,这种end也叫blunt end,很容易再次粘连在一起,此时可以通过外源性同源重组引入Gene drive,或者说blunt end再次粘连在一起,sgRNA也会会再次识别这段序列,然后Cas9会再次切,反复下去,直到发生了由NHEJ引导出的突变,sgRNA才不会识别这段序列。
CRISPR基因序列主要由前导序列(leader)、重复序列(repeat)和间隔序列(spacer)构成 。
①前导序列 :富含AT碱基,位于CRISPR基因上游, 被认为是CRISPR序列的启动子 。
②重复序列 :长度约20–50 bp碱基且包含5–7 bp回文序列,转录产物可以形成发卡结构, 稳定RNA的整体二级结构 。
③间隔序列 : 是被细菌俘获的外源DNA序列 。这就相当于细菌免疫系统的“黑名单”,当这些外源遗传物质再次入侵时,CRISPR/Cas系统就会予以精确打击。
化脓性链球菌 Cas9(以下称为SpyCas9)是大型(1,368个氨基酸)多结构域和多功能DNA核酸内切酶。它通过其两个不同的核酸酶结构域在PAM上游剪接dsDNA 3 bp:一个HNH样核酸酶结构域,其切割与指导RNA序列互补的DNA链(靶链),以及一个RuvC样核酸酶结构域,其负责切割DNA。与互补链相反的链(非目标链)。除了在CRISPR干扰中起关键作用外,Cas9还参与crRNA成熟和间隔区获取。
先简单介绍一下张锋实验室的CRISPR DOUBLE NICKASE
和普通Cas9不同的是,Cas9n (Cas9 Nickase)上有一个D10A的氨基酸突变,这个突变使得Cas9不再导致DNA双链断裂和NHEJ修复(一种会引来突变的修复),而是会引起单链断裂和BER修复(一种不会引起突变的修复),如下图
利用Cas9 nickase只能进行单链剪切的特性,张峰团队想到把两个Cas9 nickase共同作用在一个基因位点上,使其形成双链断裂(DSB),而非特异性结合则不会引起DSB,这样就降低了非特异性突变。
Cas9可以对靶基因组进行剪切,形成DNA的双链断裂。在通常情况下,细胞会采用高效的 非同源末端连接 方式(NHEJ)对断裂的DNA进行修复。但是,在修复过程中通常会发生碱基插入或缺失的错配现象,造成移码突变,( 移码突变 :是指DNA分子由于某位点碱基的缺失或插入,引起阅读框架变化,造成下游的一系列密码改变,使原来编码某种肽链的基因变成编码另一种完全不同的肽链序列。)使靶标基因失去功能,从而实现基因敲除。为了提高CRISPR系统的特异性,可将Cas9的一个结构域进行突变,形成只能对DNA单链进行切割造成DNA缺口的Cas9 nickase核酸酶。因此想要形成双链断裂的效果可以设计两条sgRNA序列,分别靶向DNA互补的两条链,这样两条sgRNA特异性的结合靶标序列,即可形成DNA断裂,并在修复过程中通过移码突变实现基因敲除
当DNA双链断裂后,如果有DNA修复模板进入到细胞中,基因组断裂部分会依据修复模板进行 同源重组修复 (HDR),从而实现基因敲入。修复模板由需要导入的目标基因和靶序列上下游的同源性序列(同源臂)组成,同源臂的长度和位置由编辑序列的大小决定。DNA修复模板可以是线性/双链脱氧核苷酸链,也可以是双链DNA质粒。HDR修复模式在细胞中发生率较低,通常小于10%。为了增加基因敲入的成功率,目前有很多科学家致力于提高HDR效率,将编辑的细胞同步至HDR最活跃的细胞分裂时期,促进修复方式以HDR进行;或者利用化学方法抑制基因进行NHEJ,提高HDR的效率
Cas9的特点是能够自主结合和切割目的基因,通过点突变的方式使Cas9的两个结构域RuvC-和HNH-失去活性,形成的dCas9只能在sgRNA的介导下结合靶基因,而不具备剪切DNA的功能。因此,将dCas9结合到基因的转录起始位点,可以阻断转录的开始,从而抑制基因表达;将dCas9结合到基因的启动子区域也可以结合转录抑制/活化物,使下游靶基因转录受到抑制或激活。因此dCas9与Cas9、Cas9 nickase的不同之处在于,dCas9造成的激活或者抑制是可逆的,并不会对基因组DNA造成永久性的改变。
将多个sgRNA质粒转入到细胞中,可同时对多个基因进行编辑,具有基因组功能筛选作用。多重编辑的应用包括:使用双Cas9nickases提高基因敲除的准确率、大范围的基因组缺失及同时编辑不同的基因。通常情况下,一个质粒上可以构建2~7个不同的sgRNA进行多重CRISPR基因编辑。
利用CRISPR-Cas9进行基因编辑可以产生大量的基因突变细胞,因此利用这些突变细胞可以确认表型的变化是否是由基因或者遗传因素导致的。基因组筛选的传统方法是shRNA技术,但是shRNA有其局限性:具有很高的脱靶效应以及无法抑制全部基因而形成假阴性的结果。CRISRP-Cas9系统的基因组筛选功能具有高特异性和不可逆性的优势,在基因组筛选中得到了广泛的应用。目前CRISPR的基因组筛选功能应用于筛选对表型有调节作用的相关基因,如对化疗药物或者毒素产生抑制的基因、影响肿瘤迁移的基因以及构建病毒筛选文库对潜在基因进行大范围筛选等。
1 重生细胞愿望变异的位置在基因组的某个地方。
2 在我们体内的细胞中,基因组指的是细胞核内所有染色体的DNA分子的总和。
这些DNA分子包含了我们所有的基因,而基因又决定了我们身体的各种特征。
当某个基因突变或发生变异时,就会影响到一些特定的生理功能。
重生细胞愿望变异也是一种基因突变,可能是由于某些因素导致基因发生了变异,使得细胞的再生和修复能力发生了变化。
3 目前,重生细胞愿望变异的具体位置和机制还需要进一步的研究和探索。
但是,可以肯定的是,如果我们能够掌握这种变异的机制和方法,就有可能利用它来治疗许多难以治愈的疾病,这对于人类健康事业将是一个巨大的进步。
本文地址:http://www.dadaojiayuan.com/jiankang/139510.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!