作者:林毅勇 邵福源
关键词:低氧预适应;脑缺氧;脑保护
摘要 预先反复短暂低氧预适应可使脑组织产生低氧适应,可使其在后续的长时间缺氧中得到保护。脑低氧预适应是脑抗缺血或缺氧的一种内源性保护现象。目前对脑低氧预适应的机制尚未最后阐明,文章对脑低氧预适应现象及其可能机制的研究进展进行了综述。
低氧预适应(hypoxic preconditioning)是指1次或多次短暂、非致死性低氧刺激后,机体获得的对更严重甚至致死性缺血或缺氧的耐受性。预适应是机体抗缺氧或缺血的一种内源性保护现象,它不仅存在于多种动物的心脏,而且也存在于肝、肾和脑等多种组织、器官和细胞中[1,2]。目前关于脑低氧预适应现象及其机制的报道较少,深入研究脑低氧预适应机制并探讨其临床应用价值,对治疗脑血管病很有意义。
1脑低氧预适应现象
1986年Schurr等[3]就发现大鼠海马脑片低氧5min后,其诱发电活动在随后长期低氧作用后仍能恢复,而对照组则不能。
Rising等[4]事先给小鼠经90、120和150s3次低氧(4.5%O2)预处理后,在致死量低氧作用下的存活时间由对照的(108±4)s延长到(403±42)s。
Vannucci等[5]在37℃下低氧(8%O2)预处理出生6d的大鼠2.5h,24h后结扎单侧颈总动脉并且低氧(8%O2)处理2.5h,在出生第30天经神经病理分析发现,低氧预适应组的14只大鼠中仅6只出现囊状梗死,而未预适应组的13只大鼠都出现了梗死。
2脑低氧预适应的可能机制
2.1低氧诱导因子-1
低氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)是一种随着细胞内氧浓度变化而调节基因表达的转录激活因子,是由氧调节亚单位HIF-1α和结构亚单位HIF-1β组成的异二聚体,具有DNA结合活性。HIF-1对低氧诱导基因,如促红细胞生成素、糖酵解酶和血管内皮生长因子等的活化起关键作用。
Bergeron等[6]通过对新生大鼠脑低氧(8%O2)预处理3h发现,低氧预处理可明显提高HIF-1α和HIF-1β的表达水平。大鼠腹腔内注射HIF-1诱导剂氯化钴(CoCl2,60mg/kg)和去铁铵(desferrioxamine,DFX,200mg/kg)后1~3h,HIF-1α和HIF-1β蛋白水平都升高。大鼠经CoCl2和DFX预处理24h后缺血缺氧可分别较对照组发挥75%和56%的脑保护作用。原代培养大鼠皮质神经元剥夺糖氧30、60、90和120min后,HIF-1DNA结合活性增高,而预先剥夺糖氧60min,48h后再剥夺糖氧90min,HIF-1的结合活性反而降低[7]。以上这些研究表明,HIF-1参与了脑低氧预适应的形成。
2.2一氧化氮
一氧化氮(NO)参与血管舒缩的调节、免疫功能的调制和神经信息的传递,是一种重要的信使物质。NO是由L-精氨酸经一氧化氮合酶(NOS)催化生成的。NOS同工酶分为神经元型NOS(nNOS)、诱导型NOS(iNOS)和内皮细胞型NOS(eNOS)3种,其中nNOS和eNOS的活性受钙离子调节,合称为结构型NOS(constitutive NOS,cNOS)。
Gidday等[8]低氧(8%O2)预处理新生6d大鼠3h发现,这种处理可完全抵抗24h后的缺血缺氧性损害。如在新生6d大鼠脑低氧预处理前0.5h腹腔注射非选择性NOS抑制剂左旋硝基精氨酸(2mg/kg),给药后0.5~3.5h即可使cNOS 的活性抑制67%~81%,完全阻断了低氧预适应的保护作用。
但是,如果低氧预处理(本身可降低cNOS 活性58%~81%)前腹腔内注射选择性nNOS抑制剂7-硝基吲唑(40mg/kg),则不能影响低氧预适应引起的脑保护作用,这与给予iNOS抑制剂氨基胍(400mg/kg)的结果相一致。以上结果表明,NO对低氧耐受的诱导起重要作用。但是,有学者对nNOS和iNOS是否参与了低氧预适应却提出了质疑,认为只有eNOS产生的NO介导了预适应的保护效应。
2.3腺苷
腺苷是一种在缺血缺氧时高能磷酸盐分解产生的内源性复合物。腺苷A1受体激动剂可以缩小梗死体积,减慢缺血早期的能量代谢,并有利于缺氧预适应后突触功能的恢复[9],而腺苷受体拮抗剂则可以阻止预适应的形成。
Zhang等[10]分别采用酶学方法和放射性配体结合方法分析了昆明小鼠腺苷含量和腺苷A1受体,发现经4次低氧预处理组海马腺苷含量明显高于正常对照组和只用1次低氧预处理组,而腺苷A1受体密度低于正常对照组,与仅用1次低氧预处理组的相同;4次低氧预处理组海马、脑桥、延髓等脑区腺苷A1受体的亲和力高于正常对照组,表明低氧预处理可以阻止一些脑区内的腺苷A1受体密度的进一步下降,使腺苷A1受体的亲和力升高。上述结果提示,低氧预适应可使海马腺苷浓度升高,并通过A1受体发挥神经保护作用。
2.4兴奋性氨基酸
中枢神经系统内含有大量兴奋性氨基酸(EAA),几乎所有的神经元都含有谷氨酸受体,药理学上把谷氨酸受体分为NMDA受体、AMPA受体、红藻氨酸受体、代谢型谷氨酸受体和L-AP4受体等5型,前3种都是谷氨酸门控的阳离子通道(离子型受体),后2种受体合称非NMDA受体。任何引起EAA浓度异常增高的病理变化都会引起兴奋毒性。EAA与低氧预适应是否有关尚待进一步研究证实。
Nakata等[11]用微透析测定方法表明,低氧预处理并不改变脑内包括EAA在内的任何氨基酸含量,从而认为预处理导致的低氧耐受与EAA无关。
Xie等[12]用小鼠研究外源离子型NMDA受体激动剂天门冬氨酸和抑制剂氯氨酮对低氧预适应的效应,并用高效液相色谱法测定低氧预处理时小鼠整个大脑和不同脑区内源性EAA(天门冬氨酸和谷氨酸)浓度的变化,结果发现,天门冬氨酸和氯氨酮分别显著地缩短和延长了小鼠的标准耐受时间;缺氧1次后EAA的浓度升高,而4次缺氧后预适应EAA浓度保持不变,甚至下降。这表明离子型NMDA受体的激活不利于低氧预适应的形成,而抑制其受体则有利于低氧预适应的形成;EAA的降解或失活对小鼠低氧耐受的形成可能有益。
2.5肿瘤坏死因子-α和神经酰胺
神经鞘磷脂的代谢产物神经酰胺(ceramide)是肿瘤坏死因子-α(TNF-α)介导的众多效应中的第二信使。Liu等[13]对培养大鼠皮质神经元的研究发现,低氧预处理有保护作用,这种保护作用可被TNF-α预处理所替代,TNF-α中和抗体可削弱此保护作用。低氧预适应和TNF-α预处理可使细胞内神经酰胺水平升高2~3倍,与耐受状态一致。烟曲霉毒素B1是一种神经酰胺合酶抑制剂,可减轻神经酰胺的上调。如在缺氧损伤前将C2-神经酰胺加入培养基中可模拟低氧预适应的效应。上述结果表明,低氧预适应是通过TNF-α触发而合成神经酰胺所介导的。
Chen等[14]在结扎出生7d大鼠右侧颈总动脉的同时低氧(8%)预处理2h,30min后心室内注射C2-神经酰胺(150mg/kg),5d后测定梗死体积,发现C2-神经酰胺可使缺血缺氧引起的大脑损伤(梗死体积)较对照组缩小45%~65%,且Bcl-2和Bcl-xl水平升高,TUNEL阳性细胞数明显减少,表明神经酰胺对未成熟大鼠大脑有神经保护作用。因此认为,神经酰胺参与了低氧预适应的形成。
2.6自由基及其清除系统
自由基是具有未配对电子的原子或原子团。脑缺血缺氧时,活性氧产生过多,自由基生成,细胞膜磷脂受其攻击导致脂质过氧化,细胞膜流动性降低、通透性增高,线粒体肿胀,溶酶体受损并释放等一系列变化。
Duan等[15]比较自由基清除系统的变化发现,与未预处理组相比,仅低氧处理1次组整个脑区的超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶的活性明显降低,而海马脂质过氧化物的浓度明显升高。但是经低氧处理4次后,它们的水平趋向于恢复至正常对照组水平,提示氧自由基和它们的特异清除酶参与了低氧耐受形成。
Rauca等[16]对成年雄性Wistar大鼠作低氧预处理(9%O2,91%N2)1h发现,可阻止戊四氮的致痫作用,而用自由基清除剂PBN能阻止这种低氧预适应的保护作用。Garnier等[17]事先用低氧(4%O2)处理沙土鼠后恢复常氧48h或7d,发现海马MnSOD有渐进而持续的表达。
以上研究表明,自由基及其内源性清除酶系统参与了低氧预适应的形成和发展。
2.7其他机制
预适应可以降低细胞能量代谢。有实验表明,抑制线粒体复合物Ⅰ、Ⅱ可以形成预适应,并可试用于提高机体的缺氧耐受能力[18]。
低氧预适应引起的神经保护作用可以被放线菌酮(一种蛋白合成抑制剂)和放线菌素D(一种RNA合成抑制剂)所抑制,表明在低氧预适应中有新的基因表达产物形成[19]。
热休克蛋白(HSP)是应激反应蛋白家族中的一员,Wada等[20]用高温(41℃)预处理15min和低氧(8%)预处理新生大鼠3h,24h后予缺血处理,发现高温和低氧预处理后都不检测到HSP72,只是缺氧缺血损害本身可诱导背侧纹状体、丘脑(轻度)和海马HSP72的表达,因此认为HSP72似与耐受无关。
Garnier等[17]也发现,沙土鼠低氧预处理后海马未见HSP72表达。星形细胞则参与细胞间液中K+代谢的调节和利用,维持神经元生存微环境的稳定,分泌神经营养因子,如神经生长因子,从而参与了预适应保护机制。Garnier等[17]用免疫组化和免疫印迹法检测胶质纤维酸性蛋白,并用免疫组化检测isolectin B4的表达,结果表明沙土鼠低氧处理与小胶质细胞激活无关,而星形细胞却明显被激活。
3脑低氧预适应的应用前景
虽然脑低氧预适应的机制尚不十分清楚,但是预适应的效应提示脑组织具有自身保护机制。如能对脑低氧预适应过程中产生的某些物质进行分离、纯化,试用于卒中和其他缺血缺氧性疾病的治疗中,也许将提高脑神经元等组织对缺血缺氧的耐受性,延长治疗时间窗,减轻后遗症,并为脑损伤等疾病的防治提供新的选择。
参 考 文 献
1Webster KA,Discher DJ,Bishopric NH.Cardioprotection in an in vitro model of hypoxic preconditioning.J Mol Cell Cardiol,1995,27(1):453-458.
2Heurteaux C,Lauritzen I,Widmann C,et al.Essential role of adenosine,adenosine A1receptors,and ATP-sensitive K+channels in cerebral ischemic preconditioning.Proc Natl Acad Sci USA,1995,92(10):4666-4670.
3Schurr A,Reid KH,Tseng MT,et al.Adaptation of adult brain tissueto anoxia and hypoxia in vitro.Brain Res,1986,374(2):244-248.
4Rising CL,D’Alecy LG.Hypoxia-induced increases in hypoxic tolerance
augmented by β-hydroxybutyrate in mice.Stroke,1989,20(9):1219-1225.
5Vannucci RC,Towfighi J,Vannucci SJ.Hypoxic preconditioning and hypoxic-ischemic brain damage in the immature rat:pathologic and metabolic correlates.J Neurochem,1998,71(3):1215-1220.
6Bergeron M,Gidday J M,Yu AY,et al.Role of hypoxia-inducible factor-1in hypoxia-induced ischemic tolerance in neonatal rat brain.Ann Neurol,2000,48(3):285-296.
7Ruscher K,Isaev N,Trendelenburg G,et al.Induction of hypoxia inducible factor1by oxygen glucose deprivation is attenuated by hypoxic preconditioning in rat cultured neurons.Neurosci Lett,1998,254(2):117-120.
8Gidday JM,Shah AR,Maceren RG,et al.Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning.J Cereb Blood Flow Metab,1999,19(3):331-340.
9Perez Pinzon MA,Mumford PL,Rosenthal M,et al.Anoxic preconditioning in hippocampal slices:role of adenosine.Neuroscience,1996,75(3):687-694.
10Zhang WL,Lu GW.Changes of adenosine and its A(1)receptor in hypoxic preconditioning.Biol Signals Recept,1999,8(4-5):275-280.
11Nakata N,Kato H,Kogure K.Ischemic tolerance and extracellular a mino acid concentrations in gerbil hippocampus measured by intracerebral microdialysis.Brain Res Bul,1994,35(3):247-251.
12Xie J,Lu G,Hou Y.Role of excitatory amino acids in hypoxic precon ditioning.Biol Signals Recept,1999,8(4-5):267-274.
13Liu J,Ginis I,Spatz M,et al.Hypoxic preconditioning protects cul tured neurons against hypoxic stress via TNF-α and ceramide.Am J Physiol Cell Physiol,2000,278(1):C144-C153.
14Chen Y,Ginis I,Hallenbeck JM.The protective effect of ceramide in immature rat brain hypoxia-ischemia involves up-regulation of bcl-2and reduction of TUNEL-positive cells.J Cereb Blood Flow Metab,2001,21(1):34-40.
15Duan C,Yan F,Song X,et al.Changes of superoxide dismutase,gluta thione perioxidase and lipid peroxides in the brain of mice preconditioned by hypoxia.Biol Signals Recept,1999,8(4-5):256-260.
16Rauca C,Zerbe R,Jantze H,et al.The importance of free hydroxyl radicals to hypoxia preconditioning.Brain Res,2000,868(1):147-149.
17Garnier P,Demougeot C,Bertrand N,et al.Stress response to hypoxia in gerbil brain:HO-1and MnSOD expression and glial activation.Brain Res,2001,893(1-2):301-309.
18Riepe MW,Ludolph AC.Chemical preconditioning:a cytoprotective strategy.Mol Cell Biochem,1997,(1-2):249-54.
19Gage AT,Stanton PK.Hypoxia triggers neuroprotective alterations in hippocampal gene expression via a heme-containing sensor.Brain Res,1996,719(1-2):172-178.
20Wada T,Kondoh T,Tamaki N.Ischemic“cross”tolerance in hypoxic ischemia of immature rat brain.Brain Res,1999,847(2):299-307.相关性
效果因人而异。
预适应训练仪是一个针对心脑血病疾病预防和治疗的国家二类医疗器械,北京宣武医院吉训明教授10多年来一直在推广这个技术,国内外的论文也有很多。
在治疗脑血管病变引起的头晕、头痛、失眠、认知能力降低等病变,效果非常好的,同时,在治疗心血管疾病方面,能够有效的打开侧着循环,有效的保护心脏。
坚持使用仪器,能够有效的预防中风,心梗等极端疾病,同时能够在发病以后的康复治疗中能大大加快康复速度。
2014年3月17日,国家食品药品监督管理总局召开的新闻发布会,从即日起,国家食药监总局将在全国集中开展为期5个月的医疗器械“五整治”专项行动,重点整治医疗器械虚假注册申报、违规生产、非法经营、扩大宣传、使用无证产品五种行为。
专项行动以重点产品、重点企业、重点案件线索为突破口,通过暗访调查、集中排查、突击检查相结合的方式,严厉打击违法违规行为,进一步规范市场秩序。
国家食药监总局要求,专项行动中,发现违法违规行为的,一律从快、从严、从重处理,并按照法律法规规定的上限予以处罚;情节严重的,一律吊销生产经营者和产品的许可证件。
涉嫌犯罪的,一律移送公安机关依法追究刑事责任;对存在安全隐患的产品,一律停止销售和使用,责令企业召回并监督销毁。
以上内容参考 ——医疗器械
一、成瘾及物质滥用的概念与性质的历史演变
人类早就注意到酒精滥用相关成瘾问题会导致各种躯体健康、心理社会问题,但成瘾性质是什么,一直争议不断。
1、成瘾是道德、意志问题
历史上,人们对成瘾的最初认识为:成瘾源于性格缺陷,是一种自我选择的结果,是精神(spiritual life)层面的道德、意志缺乏问题。
为防止成瘾行为的方法往往是强调个人的责任,对成瘾行为往往采取惩罚措施。
虽然这样的观点一直存在到现在,但随着科学研究的深入发展,特别是神经生物学的进展,我们对成瘾的看法有着较大的改变。
首先,所谓的自我选择并非“故意”,而是由生物的易感性以及成瘾后的失控造成的,重要的是把成瘾行为标记为“道德”问题,会导致社会歧视与偏见,使之成瘾者转入“地下”,导致更多社会、心理、躯体问题。
2、成瘾相关的药物滥用是违法行为
与道德模式相关,由于成瘾导致各种社会、心理、家庭等问题,世界各国都采用从法律上控制成瘾物质的使用,特别是对制毒、贩毒采取不同程度的惩罚措施,并成为预防、控制成瘾行为的手段之一。
因而,联合国制定了三个与麻醉品和精神药物有关的公约,设立了国际麻醉品管理局(International Narcotics Control Board,INCB),以监测各国对麻醉品、精神药物使用情况。同时也成立了联合国毒品与犯罪办公室(The United Nations Office on Drugs and Crimes,UNODC)以控制毒品相关违法、犯罪。
我国对吸毒问题采取了较为严厉的法律措施。我国在2007年颁布了《禁毒法》,2013年颁布了配套的禁毒条例,从法律层面上确定了禁毒的性质、方针与政策。
我国《禁毒法》制定的禁毒方针是:“预防为主,综合治理,禁种、禁制、禁贩、禁吸并举”。
3、成瘾相关的药物滥用是社会不赞许的亚文化行为
基本观点认为,是社会将药物使用规定为违法,所以就违法了。由于打击这种违法活动,增加了的药物使用者产生了贩毒行业,滋生了政府腐败,增加了药物使用成本,后者也是导致药物使用者违法犯罪的原因之一。历史上,曾经将吸烟、饮酒定义为违法,进行打击,最终失败了。
因此,将使用毒品合法化就能减少这种违法犯罪、减少吸毒危害。
所以就在欧美国家出现了所谓的注射室(药物滥用者可以在此处注射阿片类物质),咖啡屋(在此处可以购买与使用大麻),或试图将大麻合法作为突破口,如先是医疗使用合法,然后是种植、娱乐使用合法。这种合法化运动目前被世界多数国家所唾弃,不可能成为主流思路。
4、成瘾是一种慢性复杂性的脑部疾病
从医学生物学角度来看,成瘾的特征行为失控(明知有害,仍有不顾一切的强迫性觅药行为;不能控制使用剂量与频度等)、戒断症状、耐受性增加、对药物的敏感性增加等。
持这种观点的人认为,成瘾与其他疾病如糖尿病具有类似的性质。
该观点认为,长期使用药物能影响多系统的脑部环路,特别是与奖赏、动机、学习记忆、自控等行为有关的环路,所以导致了成瘾者具有强烈、不可控的药物渴求和与之相关的强迫性觅药行为。
由于其失控性,惩罚对成瘾者往往收效甚微。
不过,该观点也承认,成瘾相关的问题不仅是单纯的生物学问题(脑部疾病),其发生、展、转归受多种因素的影响,不可能仅使用生物学方法来解决成瘾问题。
1)成瘾存在大脑相关环路异常
美国成瘾医学会将成瘾定义为,涉及脑部奖赏、动机、记忆相关环路的原发性、慢性疾病。
这些环路功能异常导致生物、心理、社会、精神层面的特征性表现,显现为个体通过物质使用和其他行为病理性追求奖赏和(或)缓解痛苦。
从此定义中可以看到,成瘾是与遗传及环境相关的,涉及与奖赏、动机、学习记忆有关环路的脑部疾病,成瘾个体使用物质至少有两个目的:获得快感、减少痛苦。
彩图1-1示中脑边缘多巴胺系统,此系统起于腹侧被盖区,投射到伏隔核与前额叶皮质,此系统是奖赏的生物学基础,可能与学习、记忆、探索等有关。
2)成瘾者具有个体易感性差异
成瘾的病因学研究是药物成瘾研究的重点
药物成瘾究竟涉及哪些因素,是什么使得普通的、偶然的药物使用发展为成瘾或者依赖。
和大多数精神疾病一样,能够较好解释成瘾发生机制的是药理学因素、个体易感因素和环境因素共同作用的三因素模型。
就个体的易感性来说,一些使用成瘾药物的个体能长时间停留在社交性、娱乐性使用,最为明显的例子是绝大多数成人都有机会吸烟、喝酒,但只有部分人成为烟瘾、酒瘾者。
研究表明,即便使用成瘾性很强的可卡因,也只有15%~16%的人在首次使用10年内对可卡因成瘾。大部分人初次使用药物,多为难受感觉。
但另一些极端的个体在初次使用之后就有欣快感,能很快发展为成瘾,以后一发不可收拾。这些充分提示,成瘾现象存在较大的个体差异。
研究表明,成瘾者有较为特殊的性格因素,如好奇、冲动控制问题、对药物的奖赏性较为敏感、对应激反应过于强烈等性格特点。
这些特点均有较强的遗传倾向。不同易感因素在成瘾的不同阶段起到不同的作用,彩图1-2表示这些易感因素在成瘾过程中所起的作用。
研究发现,成瘾个体在成瘾前就比较冲动/冒险,而且冲动要求立即的满足,对药物、酒精所起的作用较为敏感,一旦发展为成瘾后,对应激反应性可能起到非常重要的作用。
3)成瘾的核心症状是失控(强迫性),病程呈渐进性发展
在成瘾早期,个体所追求的是用药后的快感,到成瘾形成后,相当一部分是为了渴求或者缓解戒断症状。
以酒精为例,我们把饮酒分为不同阶段:初期饮酒→社交性饮酒→大量无节制饮酒→躯体、心理依赖等,在不同阶段中,饮酒者对饮酒的控制也越来越差,而饮酒方式越来越固定。成瘾后则出现以下特征:
·明知有害欲罢不能,主要目的是不断追求使用药物的快感,或者为了戒除戒断而不断用药。
·对成瘾物质有强烈的渴求感。
·药物使用带有强迫性,不择手段。
·控制不了使用的剂量与频度。
·复发不可避免,反复戒断,屡屡失败。
·惩罚对他们收效甚微。
由于上述问题,成瘾者往往对自己的问题视而不见,否认自己的成瘾问题,回避自己心理、社会、家庭、人际关系问题,带着假面具生活。成瘾进一步恶化其行为、情绪失控,更加自暴自弃,如果不主动参加治疗,可能导致严重不良后果。
4)成瘾与其他精神障碍共病率高
根据美国国家共病率调查(National Comorbidity Survey,NCS)的数据,在终身患有物质使用障碍的个体中,有41%~65.5%终身患有至少一种其他精神障碍。
笔者研究表明,约2/3的海洛因依赖者共患其他DSM-Ⅳ精神障碍。
约30%的海洛因依赖者共患其他DSM-Ⅳ轴Ⅰ精神障碍,其中以心境障碍最为常见,终身患病率约20%;其次为焦虑障碍,终身患病率约13%。
相比一般人群和其他精神疾患人群,成瘾人群中人格障碍的发病率较高,是一般人群的4倍,尤以反社会型、边缘型、回避型、偏执型等人格障碍类型多见。
我们的研究发现,约60%的海洛因依赖者共患DSM-Ⅳ轴Ⅱ人格障碍,其中以B群人格障碍的患病率最高,约为50%。在人格障碍的诊断上,以反社会性人格障碍最为常见,患病率约40%,其次为边缘性人格障碍,患病率约23%。
5)成瘾行为导致各种不良心理社会问题,涉及各个年龄段
药物滥用还导致滥用者出现心理、人格的扭曲,使得药物滥用者更难以适应社会。
重要的是药物滥用能导致精神病性症状、焦虑抑郁症状等。
以饮酒问题为例,饮酒相关问题涉及胎儿,如酒精胎儿综合征;
青少年,如狂饮导致攻击冲动行为;
成人,如依赖滥用、戒断、躯体疾病等;
老年,如依赖、戒断、躯体疾病、药物相互作用。根据WHO报告,饮酒相关疾病、损伤高达60余种。
吸毒不仅危害吸毒者本人,还对社会造成巨大危害。
首先,它是诱发其他刑事犯罪和社会治安问题的温床。
其次,它给社会经济造成了巨大损失。
最后,它还导致各种疾病的传播。
截至2005年9月底,在国家累计报告的135 630例艾滋病病毒感染者中,有40.8%因静脉注射毒品而感染,居艾滋病传播途径的首位。
全国登记在册吸毒人员中,80%患有各种传染性疾病。
6)成瘾行为导致社会歧视与偏见
由于成瘾行为特点,社会、公众不可避免对成瘾者产生歧视与偏见,歧视与偏见加重了成瘾的社会心理损害,妨碍成瘾者康复、回归社会,形成了长期药物使用→成瘾→戒毒→复发→成瘾的恶性循环。
如彩图3所示,成瘾者病前就有一定的易感性;
在药物滥用过程中逐渐出现脑功能损害,导致行为失控、戒断症状、耐受性增加,发展为成瘾;
在成瘾过程中出现或者共病有严重的躯体、社会、心理损害;
成瘾后不可避免出现社会歧视与偏见。
躯体、社会、心理损害以及歧视与偏见进一步恶化成瘾者的心理社会功能,形成恶性循环,复发率很高。
显然,成瘾是一类与生物、心理、社会均有关系的复杂的脑部疾病,在预防、干预、康复成瘾行为时应该综合考虑各种因素,采用一体化综合手段来控制此类复杂疾病。
治疗与干预目的不仅是让成瘾者停止使用药物,更要他们建立无药的生活方式,维持社会、工作、家庭中的正常功能。这是一个漫长而艰巨的任务。
综上所述,成瘾行为的发生发展与个人素质、心理、社会环境等多种因素有关,
成瘾后可导致大脑一系列结构功能发生改变,其病程呈慢性复发性特征。
成瘾医学的发展,给这些工作提供了理论与实践的指导,使成瘾者康复与回归社会成为可能。
二、机体对精神活性物质易感的神经生物学基础
药物成瘾的行为学特征是强迫性用药和强迫性觅药(长期持续存在的强烈用药动机)。
1、机体对精神活性物质易感的神经生物学基础是奖赏机制
“适者生存”是生物进化的根本法则。在上亿年生物界漫长的进化过程中,生物必须具备一种重要的辨别能力,凡能使机体产生愉悦和欣快感觉的刺激就是有利于个体生存和种族延续的刺激,如性、美食、运动等;使机体出现的欣快和愉悦的程度越高,那么该刺激对个体生存和种族延续关系就越重要,形成的记忆也就越牢固、越深刻。机体实现上述辨别和记忆功能的生物学基础是“奖赏环路 。
奖赏环路的构成是位于中脑腹侧被盖区(ventral tegmental area,VTA)内的多巴胺能神经元投射到伏隔核(nucleus accumbens,NAc)、前额叶皮质(prefrontal cortex,PFC)、海马和杏仁核等不同脑区形成的神经环路。
此环路参与奖赏效应(愉悦和欣快感),或曰正性强化效应,使机体学会如何获得奖赏刺激,启动并建立用药线索和环境与奖赏的关系,防止奖赏反应过度。
在上述奖赏环路中,VTA-NAc通路是形成奖赏效应的最重要通路,尤其是在奖赏效应形成的早期。有利于个体生存和种族延续的刺激均能上调奖赏环路多巴胺系统的功能,使机体产生欣快感和相关记忆。此环路中多巴胺系统功能上调的越高,机体产生的欣快感就越强,形成的记忆就越牢固。
精神活性物质作用的靶点也各不相同,但它们都能像性和美食刺激那样,直接(甲基苯丙胺、可卡因等)或间接(海洛因等)上调奖赏环路的多巴胺系统功能;
而它们上调NAc内多巴胺浓度的程度远大于性和食物等生理性奖赏刺激,所产生的记忆也比生理性奖赏刺激牢固得多。
换句话说,包括毒品在内的精神活性物质之所以能使机体成瘾,就是因为它们“盗用”了机体固有的奖赏机制,使中脑边缘系统多巴胺水平升高,进而使机体把精神活性物质刺激误认为是有利于个体生存和种族延续的刺激。
因此,大多数学者认为,从线虫到人,只要有基本的奖赏环路(VTA-NAc)存在,只要接触精神活性物质时间足够长、量足够大,就都会成瘾。
2、成瘾的神经生物学本质——代偿性适应
代偿性适应(adaptation)是机体普遍存在的一种被动适应体内外环境改变的能力。这种能力使机体能在体内外环境发生改变时,正常的生理功能和生化过程得以维持,使生命活动不发生重大改变。
例如,当机体由1000m以下海拔高度进入2500m以上海拔高度的高原环境时,低氧就会刺激机体,通过一系列调控机制使靶组织和细胞的基因表达发生改变,使红细胞数量、血红蛋白含量、血红蛋白携带氧分子能力和机体组织器官利用氧能力增加。这一适应性改变能在某种程度上缓解缺氧对机体生理功能和生化过程的影响,使正常生理功能得以维持。
目前,大多数学者认为,精神活性物质之所以能使机体成瘾,是因为其在与机体发生长期的相互作用后引起机体发生代偿性适应改变造成的。
与上述缺氧引起机体发生的代偿性适应不同的是,由精神活性物质引起的代偿性适应更为复杂,主要发生在中枢神经系统,包括一系列生理功能、生化过程和组织形态学的适应性改变。
精神活性物质所致成瘾的神经生物学机制——代偿性适应的过程包括:
①精神活性物质进入体内;
②进入体内的精神活性物质和各自的靶分子发生相互作用,进一步改变靶分子(受体、转运体)及相关分子(代谢酶)的功能,产生包括奖赏和正性强化作用在内的急性药理作用,这被认为是成瘾过程的起点;
③在精神活性物质与机体发生长期相互作用的基础上,靶系统就会发生受体前神经递质、受体和受体后信号转导水平的代偿性改变;
④在精神活性物质与机体发生长期相互作用和(或)上述靶系统的代偿性适应的基础上,非靶系统,如谷氨酸(glutamine)、γ-氨基丁酸(γ-aminobutyric acid,GABA)等系统,也会发生受体前神经递质、受体和受体后信号转导水平的代偿性改变;
⑤上述发生在两个系统(靶系统和非靶系统)、三个水平(受体前、受体和受体后)上的代偿性适应导致耐受、躯体依赖、精神依赖和成瘾的发生。
在上述五个过程中,除过程一和二外,其他三个过程无论从代偿性适应改变的内容,还是从代偿性适应改变机制上讲,都尚未完全阐明,尤其是第五个过程。
如上所述,要较深入地认识精神活性物质引起的代偿性适应机制,首先要了解精神活性物质急性作用的分子靶位,这是精神活性物质引起代偿性适应的第一步。
例如,阿片类物质进入体内后,首先激活位于VTA内的GABA能中间神经元上与Gi/o蛋白偶联的μ阿片受体,下调GABA能神经元的功能,使受其调节的多巴胺能神经元脱抑制,而增加其投射靶区NAc等多巴胺的释放,产生奖赏效应。
研究发现,μ受体基因敲除小鼠或使用阿片受体阻断药纳洛酮等,阿片类药物既不会引起典型的行为反应,也不会造成躯体依赖和精神依赖反应。
可卡因和苯丙胺类兴奋剂都能激活单胺系统,使细胞外多巴胺、5-羟色胺和去甲肾上腺素水平升高,但是作用机制不同。
可卡因主要通过阻断多巴胺转运体、5-羟色胺转运体和去甲肾上腺素转运体,抑制单胺类神经递质的重摄取而直接上调细胞外单胺类神经递质浓度,增强单胺类神经递质系统功能
苯丙胺类兴奋剂的作用机制更为复杂,它是囊泡单胺转运体2和细胞质膜的多巴胺转运体、5-羟色胺转运体、去甲肾上腺素转运体的竞争性抑制剂,使神经元囊泡中存贮的单胺类神经递质逆转运至细胞外并抑制细胞外的多巴胺等单胺类神经递质重摄取,另外苯丙胺类兴奋剂还有一定的抑制单胺氧化酶活性的作用。
大麻类药物激活G蛋白偶联的1型和2型大麻受体(CB1与CB2);
酒精易化GABAA受体和抑制NMDA受体功能,也调节5-HT3受体和烟碱受体及其他受体(因酒精可直接与受体蛋白发生相互作用,它几乎可以影响所有受体的功能);
尼古丁激活烟碱型乙酰胆碱受体;麦角二乙胺等致幻剂部分激活5-HT2A受体;
巴比妥类和苯二氮类激活GABAA受体,从而上调奖赏环路多巴胺功能。
综上所述,这些药物在改变各自靶分子功能的基础上都能上调NAc内的多巴胺浓度,从而产生奖赏效应,启动机体成瘾过程。
精神活性物质长期与其各自的靶分子发生上述相互作用后,就会引起靶系统和非靶系统发生代偿性适应。
此代偿性适应的生物学基础是精神活性物质通过长期改变靶分子功能引起的分子生物学和细胞生物学改变。
以阿片为例,其在分子水平引起代偿性适应的过程是:
首先,阿片通过急性作用,激活靶神经元细胞膜上的μ阿片受体,抑制神经元内腺苷酸环化酶(adenylyl cyclase,AC)活性,降低细胞内cAMP浓度,引起蛋白激酶活性下降,下调细胞内靶分子磷酸化水平,进一步影响细胞内靶蛋白和细胞膜上离子通道功能而发挥抑制性效应,产生镇痛等药理作用。
在阿片上述急性作用的基础上,吗啡通过长时间激活阿片受体,过度抑制AC活性,在发挥上述药理作用的同时,还会引起靶细胞内的某些分子,如cAMP反应元件结合蛋白(cAMP-responsive element binding protein,CREB)的表达水平和转录活性上调;后者进入细胞核,使某些转录因子,如核因子-κB(nuclear factor-κB,NF-κB)表达上调;NF-κB进一步通过上调某些与阿片受体信号转导功能相关的重要分子的表达,而对抗吗啡引起的AC抑制效应,从而实现阿片受体作用系统(靶系统)在受体前、受体和受体后的代偿性适应改变。
此外,阿片通过激活阿片受体,间接上调VTA多巴胺能神经元功能,也会通过如上所述的分子机制引起多巴胺系统(非靶系统)发生受体前、受体和受体后的代偿性适应改变。
上述改变最终导致神经元的结构、功能和生化过程发生可塑性改变,构成了特定的代偿性适应的发生。
细胞水平的代偿性适应的主要神经生物学过程表现为,在精神活性物质长期作用下,在上述分子水平代偿性适应改变的基础上,神经元突触结构和突触传递功能发生了改变。
哺乳动物神经系统的结构和功能对内、外因素的改变具有易变化性和可修饰性,这是神经系统的重要特征之一。
神经系统具有通过调节神经元的内在特性和突触连接的能力来适应环境变化的特性,称此为神经可塑性(neuroplasticity),被认为是形成新的神经系统功能(如学习记忆)的神经生物学基础。
精神活性物质的长期作用能够诱导突触在结构和功能方面发生适应性变化,即突触可塑性变化。
在结构方面,长期使用精神活性物质能够使PFC、NAc等脑区的树突棘密度发生改变,甚至引起神经元的形态和大小改变;
在功能方面,长期使用精神活性物质能够影响突触传递的长时程增强(long-term potentiation,LTP)和长时程抑制(long-term depression,LTD)。这种突触结构和功能的持久改变,是驱动成瘾行为的细胞学基础。
值得注意的是,虽然长期使用精神活性物质能够诱导突触可塑性的持久性改变,但是这种改变并非不可逆,随着戒断时间的延长有可能恢复。
因此,突触可塑性改变尚不能很好地解释药物成瘾形成的能持续几年、甚至几十年的长时程记忆。
三、与药物成瘾机制相关的重要假说
药物成瘾的神经生物学机制非常复杂、尚未完全阐明,用于解释药物成瘾机制的代表性假说主要有以下几种。
1、正性强化假说(positive reinforcement hypothesis)
2、负性强化假说(negative reinforcement hypothesis)
3、动机-敏化假说(incentive-sensitization hypothesis)
4、异常学习记忆假说(aberrant learning and memory hypothesis)
5)认知功能障碍假说(cognitive dysfunction hypothesis)
6)习惯性行为假说(habitual behavior hypothesis)
本文地址:http://www.dadaojiayuan.com/zhongyizatan/62401.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
上一篇: 内洋地黄素与脑血管疾病
下一篇: 一氧化氮在急诊医学的进展及应用