登录
首页 >> 中医基础常识 >> 杂谈

人载脂蛋白a及其片段在肾脏内代谢

医案日记 2023-05-19 00:07:20

人载脂蛋白a及其片段在肾脏内代谢

据德国科研人员报道,人载脂蛋白a(Lpa)注射入大鼠后可积聚在大鼠肾脏的细胞内,然后在肾脏内代谢成为apoA片段从尿中排出。因此,肾脏对于Lpa的代谢至关重要。

德国汉堡Eppendorf大学医院内科的Tjark Reblin博士及其同事指出,目前对于导致动脉粥样化形成的脂蛋白a(Lpa)的代谢部位及其机理尚未阐明。但是,研究发现终末期肾病患者Lpa水平升高,这表明Lpa可能经肾脏代谢。

研究人员以大鼠为模型研究了人Lpa的代谢。首先将纯化的人Lpa注射入Wistar大鼠体内,并在不同时间点(30分钟到24小时)处死大鼠。结果发现,完整Lpa的半衰期为14.5小时,然后从注射大鼠的循环中被清除。在4、8和24小时后肾脏近曲小管的胞浆内可见强载脂蛋白a(apoA)免疫染色。在注射后1到8小时,载脂蛋白B(apoB)与apoA可同时存在于肾小球内,但肾毛细血管和肾小管仍为阴性。

研究人员指出,注射Lpa后,大鼠血浆内未见相应数量的apoA片段。但是,在所收集的尿样中可检测到分子量50-160kd的apoA片段,这表明肾脏在Lpa片段化中发挥重要的作用。

Reblin博士认为,尽管啮齿类动物缺乏内源性Lpa,但注射人Lpa的大鼠可作为一个有用的动物模型,供科研人员对Lpa的肾脏代谢状况进行深入研究。

临床执业医师考点:脂类代谢

临床执业医师考点:脂类代谢

  消化主要在小肠上段经各种酶及胆汁酸盐的作用,水解为甘油、脂肪酸等。 脂类的吸收含两种情况: 中链、短链脂肪酸构成的甘油三酯乳化后即可吸收——>肠粘膜细胞内水解为脂肪酸及甘油——>门静脉入血。长链脂肪酸构成的甘油三酯在肠道分解为长链脂肪酸和甘油一酯,再吸收——>肠粘膜细胞内再合成甘油三酯,与载脂蛋白、胆固醇等结合成乳糜微粒——>淋巴入血。

  第一节 概述

  一、生理功能

  (一)储存能量,是水化糖原的6倍

  (二)结构成分,磷脂、胆固醇等

  (三)生物活性物质,如激素、第二信使、维生素等

  二、消化吸收

  (一)消化:主要在十二指肠,胰脂肪酶有三种:甘油三酯脂肪酶,水解生成2-单脂酰甘油需胆汁和共脂肪酶激活,否则被胆汁酸盐抑制;胆固醇酯酶,生成胆固醇和脂肪酸;磷脂酶A2,生成溶血磷脂和脂肪酸。食物中的脂肪主要是甘油三酯,与胆汁结合生成胆汁酸盐微团,其中的甘油三酯70%被胰脂肪酶水解,20%被肠脂肪酶水解成甘油和脂肪酸。微团逐渐变小,95%的胆汁酸盐被回肠重吸收。

  (二)吸收:水解产物经胆汁乳化,被动扩散进入肠粘膜细胞,在光滑内质网重新酯化,形成前乳糜微粒,进入高尔基体糖化,加磷脂和胆固醇外壳,形成乳糜微粒,经淋巴系统进入血液。甘油和小分子脂肪酸(12个碳以下)可直接进入门静脉血液。

  (三)转运:甘油三酯和胆固醇酯由脂蛋白转运。在脂蛋白中,疏水脂类构成核心,外面围绕着极性脂和载脂蛋白,以增加溶解度。载脂蛋白主要有7种,由肝脏和小肠合成,可使疏水脂类溶解,定向转运到特异组织。

  1. 乳糜微粒转运外源脂肪,被脂肪酶水解后成为乳糜残留物。

  2. 极低密度脂蛋白转运内源脂肪,水解生成中间密度脂蛋白,(IDL或LDL1),失去载脂蛋白后转变为低密度脂蛋白,

  3. 低密度脂蛋白又称β脂蛋白,转运胆固醇到肝脏。β脂蛋白高易患动脉粥样硬化。

  4. 高密度脂蛋白由肝脏和小肠合成,可激活脂肪酶,有清除血中胆固醇的作用。

  LDL/HDL称冠心病指数,正常值为2.0+_0.7

  5. 自由脂肪酸与清蛋白结合,构成极高密度脂蛋白而转运。

  第二节 甘油三酯的分解代谢

  一、甘油三酯的水解

  (一)组织脂肪酶有三种,脂肪酶、甘油二酯脂肪酶和甘油单酯脂肪酶,逐步水解R3、R1、R2,生成甘油和游离脂肪酸。

  (二)第一步是限速步骤,肾上腺素、肾上腺皮质激素、高血糖素通过cAMP和蛋白激酶激活,胰岛素和前列腺素E1相反,有抗脂解作用。

  二、甘油代谢

  脂肪细胞没有甘油激酶,所以甘油被运到肝脏,由甘油激酶磷酸化为3-磷酸甘油,再由磷酸甘油脱氢酶催化为磷酸二羟丙酮,进入酵解或异生,并生成NADH。

  三、脂肪酸的氧化

  (一)饱和偶数碳脂肪酸的氧化

  1. 脂肪酸的活化:脂肪酸先生成脂酰辅酶A才能进行氧化,称为活化。由脂酰辅酶A合成酶(硫激酶)催化,线粒体中的酶作用于4-10个碳的脂肪酸,内质网中的酶作用于12个碳以上的长链脂肪酸。生成脂酰AMP中间物。乙酰acetyl;脂酰acyl

  2. 转运:短链脂肪酸可直接进入线粒体,长链脂肪酸需先在肉碱脂酰转移酶I催化下与肉碱生成脂酰肉碱,再通过线粒体内膜的移位酶穿过内膜,由肉碱转移酶II催化重新生成脂酰辅酶A。最后肉碱经移位酶回到细胞质。

  3. β-氧化:在线粒体基质进行,每4步一个循环,生成一个乙酰辅酶A。

  l脱氢:在脂酰辅酶A脱氢酶作用下,α、β位生成反式双键,即Δ2反式烯脂酰辅酶A。酶有三种,底物链长不同,都以FAD为辅基。生成的FADH2上的氢不能直接氧化,需经电子黄素蛋白(ETF)、铁硫蛋白和辅酶Q进入呼吸链。

  l水化:由烯脂酰辅酶A水化酶催化,生成L-β-羟脂酰辅酶A。此酶只催化Δ2双键,顺式双键生成D型产物。

  l再脱氢:L-β-羟脂酰辅酶A脱氢酶催化生成β-酮脂酰辅酶A和NADH,只作用于L型底物。

  l硫解:由酮脂酰硫解酶催化,放出乙酰辅酶A,产生少2个碳的脂酰辅酶A。酶有三种,底物链长不同,有反应性强的巯基。此步放能较多,不易逆转。

  4. 要点:活化消耗2个高能键,转移需肉碱,场所是线粒体,共四步。每个循环生成一个NADH和一个FADH2,放出一个乙酰辅酶A。软脂酸经β-氧化和三羧酸循环,共产生5*7+12*8-2=129个ATP,能量利用率为40%。

  (二)不饱和脂肪酸的氧化

  1. 单不饱和脂肪酸的氧化:油酸在9位有顺式双键,三个循环后形成Δ3顺烯脂酰辅酶A。在Δ3顺Δ2反烯脂酰辅酶A异构酶催化下继续氧化。这样一个双键少2个ATP。

  2. 多不饱和脂肪酸的氧化:亚油酸在9位和12位有两个顺式双键,4个循环后生成Δ2顺烯脂酰辅酶A,水化生成D-产物,在β-羟脂酰辅酶A差向酶作用下转变为L型,继续氧化。

  (三)奇数碳脂肪酸的氧化

  奇数碳脂肪酸经β氧化可产生丙酰辅酶A,某些支链氨基酸也生成丙酸。丙酸有下列两条代谢途径:

  1. 丙酰辅酶A在丙酰辅酶A羧化酶催化下生成D-甲基丙二酸单酰辅酶A,并消耗一个ATP。在差向酶作用下生成L-产物,再由变位酶催化生成琥珀酰辅酶A,进入三羧酸循环。需腺苷钴胺素作辅酶。

  2. 丙酰辅酶A经脱氢、水化生成β-羟基丙酰辅酶A,水解后在β-羟基丙酸脱氢酶催化下生成丙二酸半醛,产生一个NADH。丙二酸半醛脱氢酶催化脱羧,生成乙酰辅酶A,产生一个NADPH。

  (四)脂肪酸的α-氧化

  存在于植物种子、叶子,动物脑和肝脏。以游离脂肪酸为底物,涉及分子氧或过氧化氢,对支链、奇数和过长链(22)脂肪酸的降解有重要作用。哺乳动物叶绿素代谢时,经过水解、氧化,生成植烷酸,其β位有甲基,需通过α氧化脱羧才能继续β氧化。

  α氧化有以下途径:

  1. 脂肪酸在单加氧酶作用下α羟化,需Fe2+和抗坏血酸,消耗一个NADPH。经脱氢生成α-酮脂肪酸,脱羧生成少一个碳的脂肪酸。

  2. 在过氧化氢存在下,经脂肪酸过氧化物酶催化生成D-α-氢过氧脂肪酸,脱羧生成脂肪醛,再脱氢产生脂肪酸或还原。

  (五)ω-氧化

  12个碳以下的脂肪酸可通过ω-氧化降解,末端甲基羟化,形成一级醇,再氧化成醛和羧酸。一些细菌可通过ω-氧化将烷烃转化为脂肪酸,从两端进行ω-氧化降解,速度快。

  四、酮体代谢

  乙酰辅酶A在肝和肾可生成乙酰乙酸、β-羟基丁酸和丙酮,称为酮体。肝通过酮体将乙酰辅酶A转运到外周组织中作燃料。心和肾上腺皮质主要以酮体作燃料,脑在饥饿时也主要利用酮体。平时血液中酮体较少,有大量乙酰辅酶A必需代谢时酮体增多,可引起代谢性酸中毒,如糖尿病。

  (一)合成

  1. 两个乙酰辅酶A被硫解酶催化生成乙酰乙酰辅酶A。β-氧化的`最后一轮也生成乙酰乙酰辅酶A。

  2. 乙酰乙酰辅酶A与一分子乙酰辅酶A生成β-羟基-β-甲基戊二酰辅酶A,由HMG辅酶A合成酶催化。

  3. HMG辅酶A裂解酶将其裂解为乙酰乙酸和乙酰辅酶A。

  4. D-β-羟丁酸脱氢酶催化,用NADH还原生成β羟丁酸,反应可逆,不催化L-型底物。

  5. 乙酰乙酸自发或由乙酰乙酸脱羧酶催化脱羧,生成丙酮。

  (二)分解

  1. 羟丁酸可由羟丁酸脱氢酶氧化生成乙酰乙酸,在肌肉线粒体中被3-酮脂酰辅酶A转移酶催化生成乙酰乙酰辅酶A和琥珀酸。也可由乙酰乙酰辅酶A合成酶激活,但前者活力高且分布广泛,起主要作用。乙酰乙酰辅酶A可加入β-氧化。

  2. 丙酮代谢较复杂,先被单加氧酶催化羟化,然后可生成丙酮酸或乳酸、甲酸、乙酸等。大部分丙酮异生成糖,是脂肪酸转化为糖的一个可能途径。

  第三节 甘油三酯的合成代谢

  一、软脂酸的合成

  (一)乙酰辅酶A的转运

  合成脂肪酸的碳源来自乙酰辅酶A,乙酰辅酶A是在线粒体形成的,而脂肪酸的合成场所在细胞质中,所以必需将乙酰辅酶A转运出来。乙酰辅酶A在线粒体中与草酰乙酸合成柠檬酸,通过载体转运出线粒体,在柠檬酸裂解酶催化下裂解为乙酰辅酶A和草酰乙酸,后者被苹果酸脱氢酶还原成苹果酸,再氧化脱羧生成丙酮酸和NADPH,丙酮酸进入线粒体,可脱氢生成乙酰辅酶A,也可羧化生成草酰乙酸。

  (二)丙二酸单酰辅酶A的生成

  乙酰辅酶A以丙二酸单酰辅酶A的形式参加合成。乙酰辅酶A与碳酸氢根、ATP反应,羧化生成丙二酸单酰辅酶A,由乙酰辅酶A羧化酶催化。此反应是脂肪酸合成的限速步骤,被柠檬酸别构激活,受软脂酰辅酶A抑制。此酶有三个亚基:生物素羧化酶(BC)、生物素羧基载体蛋白(BCCP)和羧基转移酶(CT)。

  (三)脂肪酸合成酶体系

  有7种蛋白,以脂酰基载体蛋白为中心,中间产物以共价键与其相连。载体蛋白含巯基,与辅酶A类似,可由辅酶A合成。

  (四)脂肪酸的合成

  1. 起始:乙酰辅酶A在ACP-酰基转移酶催化下生成乙酰ACP,然后转移到β-酮脂酰-ACP合成酶的巯基上。

  2. ACP与丙二酸单酰辅酶A生成丙二酸单酰ACP,由ACP:丙二酸单酰转移酶催化。

  3. 缩合:β-酮脂酰ACP合成酶将乙酰基转移到丙二酸单酰基的α-碳上,生成乙酰乙酰ACP,并放出CO2。所以碳酸氢根只起催化作用,羧化时储存能量,缩合时放出,推动反应进行。

  4. 还原:NADPH在β-酮脂酰ACP还原酶催化下将其还原为D-β-羟丁酰ACP。β-氧化的产物是L-型。

  5. 脱水:羟脂酰ACP脱水酶催化生成Δ2反丁烯酰ACP,即巴豆酰ACP。

  6. 再还原:烯脂酰ACP还原酶用NADPH还原为丁酰ACP。β-氧化时生成FADH2,此时是为了加速反应。

  7. 第二次循环从丁酰基转移到β-酮脂酰ACP合成酶上开始。7次循环后生成软脂酰ACP,可被硫酯酶水解,或转移到辅酶A上,或直接形成磷脂酸。β-酮脂酰ACP合成酶只能接受14碳酰基,并受软脂酰辅酶A反馈抑制,所以只能合成软脂酸。

  (五)软脂酸的合成与氧化的区别有8点:部位、酰基载体、二碳单位、辅酶、羟脂酰构型、对碳酸氢根和柠檬酸的需求、酶系、能量变化。

  二、其他脂肪酸的合成

  (一)脂肪酸的延长

  1. 线粒体酶系:在基质中,可催化短链延长。基本是β-氧化的逆转,但第四个酶是烯脂酰辅酶A还原酶,氢供体都是NADPH。

  2. 内质网酶系:粗糙内质网可延长饱和及不饱和脂肪酸,与脂肪酸合成相似,但以辅酶A代替ACP。可形成C24。

  (二)不饱和脂肪酸的形成

  1. 单烯脂酸的合成:需氧生物可通过单加氧酶在软脂酸和硬脂酸的9位引入双键,生成棕榈油酸和油酸。消耗NADPH。厌氧生物可通过β-羟脂酰ACP脱水形成双键。

  2. 多烯脂酸的合成:由软脂酸通过延长和去饱和作用形成多不饱和脂肪酸。哺乳动物由四种前体转化:棕榈油酸(n7)、油酸(n9)、亚油酸(n6)和亚麻酸(n3),其中亚油酸和亚麻酸不能自己合成,必需从食物摄取,称为必需脂肪酸。其他脂肪酸可由这四种前体通过延长和去饱和作用形成。

  三、甘油三酯的合成:肝脏和脂肪组织

  (一)前体合成:包括L-α-磷酸甘油和脂酰辅酶A。细胞质中的磷酸二羟丙酮经α-磷酸甘油脱氢酶催化,以NADH还原生成磷酸甘油。也可由甘油经甘油激酶磷酸化生成,但脂肪组织缺乏有活性的甘油激酶。

  (二)生成磷脂酸:磷酸甘油与脂酰辅酶A生成单脂酰甘油磷酸,即溶血磷脂酸,再与脂酰辅酶A生成磷脂酸。都由甘油磷酸脂酰转移酶催化。磷酸二羟丙酮也可先酯化,再还原生成溶血磷脂酸。

  (三)合成:先被磷脂酸磷酸酶水解,生成甘油二酯,再由甘油二酯转酰基酶合成甘油三酯。

  四、各组织的脂肪代谢

  脂肪组织脂解的限速酶是脂肪酶,生成的游离脂肪酸进入血液,可用于氧化或合成,而甘油不能用于合成。肝脏可将脂肪酸氧化或合成酮体或合成甘油三酯。

  第四节 磷脂代谢

  一、分解:

  (一)磷脂酶有以下4类:

  1. 磷脂酶A1:水解C1

  2. 磷脂酶A2:水解C2

  3. 磷脂酶C:水解C3,生成1,2-甘油二酯,与第二信使有关。

  4. 磷脂酶D:生成磷脂酸和碱基

  5. 磷脂酶B:同时水解C1和C2,如点青霉磷脂酶。

  (二)溶血磷脂:只有一个脂肪酸,是强去污剂,可破坏细胞膜,使红细胞破裂而发生溶血。某些蛇毒含溶血磷脂,所以有剧毒。溶血磷脂酶有L1和L2,分别水解C1和C2。

  (三)产物去向:甘油和磷酸参加糖代谢,氨基醇可用于磷脂再合成,胆碱可转甲基生成其他物质。

  二、合成:

  (一)脑磷脂的合成:

  1. 乙醇胺的磷酸化:乙醇胺激酶催化羟基磷酸化,生成磷酸乙醇胺。

  2. 与CTP生成CDP-乙醇胺,由磷酸乙醇胺胞苷转移酶催化,放出焦磷酸。

  3. 与甘油二酯生成脑磷脂,放出CMP。由磷酸乙醇胺转移酶催化。该酶位于内质网上,内质网上还有磷脂酸磷酸酶,水解分散在水中的磷脂酸,用于磷脂合成。肝脏和肠粘膜细胞的可溶性磷脂酸磷酸酶只能水解膜上的磷脂酸,合成甘油三酯。

  (二)卵磷脂合成:

  1. 节约利用途径:与脑磷脂类似,利用已有的胆碱,先磷酸化,再连接CDP作载体,与甘油二酯生成卵磷脂。

  2. 从头合成途径:将脑磷脂的乙醇胺甲基化,生成卵磷脂。供体是S-腺苷甲硫氨酸,由磷脂酰乙醇胺甲基转移酶催化,生成S-腺苷高半胱氨酸。共消耗3个供体。

  (三)磷脂酰肌醇的合成

  1. 磷脂酸与CTP生成CDP-二脂酰甘油,放出焦磷酸。由磷脂酰胞苷酸转移酶催化。

  2. CDP-二脂酰甘油:肌醇磷脂酰转移酶催化生成磷脂酰肌醇。磷脂酰肌醇激酶催化生成PIP,PIP激酶催化生成PIP2。磷脂酶C催化PIP2水解生成IP3和DG,IP3使内质网释放钙,DG增加蛋白激酶C对钙的敏感性,通过磷酸化起第二信使作用。

  (四)其他:磷脂酰丝氨酸可通过脑磷脂与丝氨酸的醇基交换生成,由磷酸吡哆醛酶催化。心磷脂的合成先生成CDP-二酰甘油,再与甘油-3-磷酸生成磷脂酰甘油磷酸,水解掉磷酸后与另一个CDP-二脂酰甘油生成心磷脂。由磷酸甘油磷脂酰转移酶催化。

  第五节 鞘脂类代谢

  一、鞘磷脂的合成

  (一)合成鞘氨醇:软脂酰辅酶A与丝氨酸经缩合、还原、氧化等一系列酶促反应形成。

  (二)氨基被脂酰辅酶A酰化,生成神经酰胺。由鞘氨醇酰基转移酶。

  (三)神经酰胺与CDP-胆碱生成鞘磷脂,由神经酰胺胆碱磷酸转移酶催化。

  二、鞘糖脂的合成

  (一)脑苷脂:神经酰胺与UDP-葡萄糖生成葡萄糖脑苷脂,由葡萄糖基转移酶催化,是b-糖苷键。也可先由糖基与鞘氨醇反应,再酯化。

  (二)脑硫脂:硫酸先与2分子ATP生成PAPS,再转移到半乳糖脑苷脂的3位。由微粒体的半乳糖脑苷脂硫酸基转移酶催化。

  (三)神经节苷脂:以神经酰胺为基础合成,UDP为糖载体,CMP为唾液酸载体,转移酶催化。其分解在溶酶体进行,需要糖苷酶等。酶缺乏可导致脂类沉积症,神经发育迟缓,存活期短。

  第六节 胆固醇代谢

  一、胆固醇的合成

  (一)二羟甲基戊酸(MVA)的合成

  1. 羟甲基戊二酰辅酶A(HMG CoA)的合成:可由3个乙酰辅酶A合成,也可由亮氨酸合成。

  2. 二羟甲基戊酸的合成:由HMG CoA还原酶催化,消耗2分子NADPH,不可逆。是酮体和胆固醇合成的分支点。此反应是胆固醇合成的限速步骤,酶有立体专一性,受胆固醇抑制。酶的合成和活性都受激素控制,cAMP可促进其磷酸化,降低活性。

  (二)异戊烯醇焦磷酸酯(IPP)的合成:二羟甲基戊酸经2分子ATP活化,再脱羧。是活泼前体,可缩合形成胆固醇、脂溶性维生素、萜类等许多物质。

  (三)生成鲨烯:6个IPP缩合生成鲨烯,由二甲基丙烯基转移酶催化。鲨烯是合成胆固醇的直接前体,水不溶。

  (四)生成羊毛固醇:固醇载体蛋白将鲨烯运到微粒体,环化成羊毛固醇,需分子氧和NADPH参加。

  (五)生成胆固醇:羊毛固醇经切除甲基、双键移位、还原等步骤生成胆固醇。需固醇载体蛋白,7-脱氢胆固醇是中间物之一。

  二、胆固醇酯的合成

  胆固醇酯主要存在于脂蛋白的脂类核心中。可由卵磷脂:胆固醇酰基转移酶催化,将卵磷脂C2的不饱和脂肪酸转移到胆固醇3位羟基上。此酶存在于高密度脂蛋白中,在细胞中还有脂酰辅酶A:胆固醇脂酰转移酶,也可合成胆固醇酯。

  三、胆汁酸的合成

  包括游离胆酸和结合胆酸,前者有胆酸、脱氧胆酸等,后者是他们与牛磺酸或甘氨酸以酰胺键结合的产物。其结构的特点是24位有羧基,3、7、12位有a-羟基,在同侧,形成一个极性面,是很好的乳化剂。

  肝脏由胆固醇合成胆酸,先由7a羟化酶形成7a胆固醇,是限速步骤。此酶是单加氧酶,存在于微粒体,需NADPH和分子氧。胆酸先形成胆酰辅酶A,再与牛磺酸等结合。

  四、类固醇激素的合成

  (一)孕酮的合成:胆固醇先在20位羟化,由20a羟化酶催化,是限速步骤。然后在22位羟化,切除6个碳,生成孕烯醇酮和异己醛。孕烯醇酮在3b脱氢酶催化下生成孕酮,是许多激素的共同前体。

  (二)肾上腺皮质有21羟化酶,可合成皮质醇、皮质酮和醛固酮。性腺有碳链裂解酶,可生成雄烯二酮,再经17b脱氢酶生成睾酮。卵巢和胎盘还有芳香酶系,可产生苯环,生成雌酮和雌二醇。

  五、维生素D的合成

  7-脱氢胆固醇经紫外线照射可生成前维生素D,再生成维生素D3。所以维生素D不是必须的。麦角固醇可转变为维生素D2。

  第七节 前列腺素代谢

  一、分类

  (一)天然的前列腺素有19种,根据五元环的结构可分为A-I等9类,根据双键数可分为1、2、3三类。由花生四烯酸合成的有2个双键,即2系,最常见。前列腺素的功能主要有两个,一是影响平滑肌的收缩强烈作用于肠道、血管、支气管、子宫等:二是改变腺苷酸环化酶的活性,一般是促进,但在脂肪组织是抑制,所以有抗脂解作用。

  (二)凝血恶烷酸A2(TXA2):由血小板合成,有一个含氧的六元杂环,环中还有一个氧。可促进血小板凝集,与PGI2相拮抗。

  (三)白三烯(LTs):由白细胞制造,有三个共轭双键,故名。其分子中没有环,可有多个双键。可分为ABCDE等类。与化学趋化性、炎症和变态反应有关。

  二、合成

  主要由花生四烯酸合成。钙浓度升高使磷脂酶A2活化,水解膜磷脂,放出花生四烯酸。脂肪酸环加氧酶在9位和11位引入过氧化物,再环化,生成PGG2,然后酶促形成其他前列腺素和TX。脂加氧酶可由花生四烯酸合成白三烯。

  三、调控

  脂肪酸环加氧酶可自溶,存在时间短,不依赖反馈调节,而是由酶量调节。其活性被酚类促进,被某些药物及花生四烯酸、乙炔类似物抑制。

  第八节 脂类代谢调控

  一、脂解的调控

  脂解是脂类分解代谢的第一步,受许多激素调控,激素敏感脂肪酶是限速酶。肾上腺素、去甲肾上腺素和胰高血糖素通过环AMP激活,作用快。生长激素和糖皮质激素通过蛋白合成加速反应,作用慢。甲状腺素促进脂解的原因一方面是促进肾上腺素等的分泌,另一方面可抑制cAMP磷酸二酯酶,延长其作用时间。甲基黄嘌呤(茶碱、咖啡碱)有类似作用,所以使人兴奋。

  胰岛素、PGE、烟酸和腺苷可抑制腺苷酸环化酶,起抑制脂解作用。胰岛素还可活化磷酸二酯酶,并促进脂类合成,具体是提供原料和活化有关的酶,如促进脂肪酸和葡萄糖过膜,加速酵解和戊糖支路,激活乙酰辅酶A羧化酶等。

  二、脂肪酸代谢调控

  (一)分解:长链脂肪酸的跨膜转运决定合成与氧化。肉碱脂酰转移酶是氧化的限速酶,受丙二酸单酰辅酶A抑制,饥饿时胰高血糖素使其浓度下降,肉碱浓度升高,加速氧化。能荷高时还有NADH抑制3-羟脂酰辅酶A脱氢酶,乙酰辅酶A抑制硫解酶。

  (二)合成:

  1. 短期调控:通过小分子效应物调节酶活性,最重要的是柠檬酸,可激活乙酰辅酶A羧化酶,加快限速步骤。乙酰辅酶A和ATP抑制异柠檬酸脱氢酶,使柠檬酸增多,加速合成。软脂酰辅酶A拮抗柠檬酸的激活作用,抑制其转运,还抑制6-磷酸葡萄糖脱氢酶产生NADPH及柠檬酸合成酶产生柠檬酸的过程。乙酰辅酶A羧化酶还受可逆磷酸化调节,磷酸化则失去活性,所以胰高血糖素抑制合成,而胰岛素有去磷酸化作用,促进合成。

  2. 长期调控:食物可改变有关酶的含量,称为适应性调控。

  三、胆固醇代谢调控

  (一)反馈调节:胆固醇抑制HMG辅酶A还原酶活性,长期禁食则增加酶量。

  (二)低密度脂蛋白的调节作用:细胞从血浆LDL获得胆固醇,游离胆固醇抑制LDL受体基因,减少受体合成,降低摄取。

  名词解释:

  β-氧化:碳氧化降解生成乙酰CoA,同时生成NADH 和FADH2,因此可产生大量的ATP。该途径因脱氢和裂解均发生在β位碳原子而得名。每一轮脂肪酸β氧化都由四步反应组成:氧化,水化,再氧化和硫解。

  肉毒碱穿梭系统(carnitine shuttle system):脂酰CoA通过形成脂酰肉毒碱从细胞质转运到线粒体的一个穿梭循环途径。

  酮体(acetone body):在肝脏中由乙酰CoA合成的燃料分子(β羟基丁酸,乙酰乙酸和丙酮)。在饥饿期间酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。

  柠檬酸转运系统(citrate transport system):将乙酰CoA从线粒体转运到细胞质的穿梭循环途径。在转运乙酰CoA的同时,细胞质中NADH氧化成NAD﹢,NADP+还原为NADPH。每循环一次消耗两分子ATP。

;

血液化验单中的载脂蛋白A,载脂蛋白B是指什么?

对血脂的认识。什么是血脂?血脂是血液中所含脂质的总称。脂质是一大类化学物质,血脂主要包括胆固醇、甘油三脂、磷脂、脂肪酸等。它们是血液中的正常成分,分别具有重要的生理功能。什么是脂蛋白?因为血脂像油脂一样也是不溶于水的,在血液中它们必须和一类特殊蛋白质相结合,形成易溶于水的复合物。这种复合物就叫做脂蛋白。特殊蛋白质就好比运送货物的载体,故称作载脂蛋白(Apo)。主要几种脂蛋白有何特点?乳麋微粒(简称CM)这种脂蛋白分子主要来源于食物脂肪;体积大密度最低;含外源性脂肪达95%、胆固醇4%、蛋白质1%、磷脂5%;外观可使血清呈现混浊,CM含量增高时可使血液粘稠度增加。低密度脂蛋白(LDL)主要由极低密度脂蛋白代谢演变而成;含内源性胆固醇50%、甘油三脂5%、蛋白质20%、磷脂25%;LDL是导致动脉粥样硬化的元凶之一。高密度脂蛋白(HDL)来源多种;这种脂蛋白分子体积最小,比重最大;其主要成分蛋白质45%、磷脂25%、甘油三脂5%、胆固醇25%;它(HDL)是心血管的保护因子。载脂蛋白A 1.高密度脂蛋白颗粒中的载脂蛋白A-1能激活胆固醇代谢中的关键酶,3 并进一步清除组织中的胆固醇,把它运到肝脏去处理,这样便减慢和阻止了动脉粥样硬化的发生和发展,相反亦然,若载脂蛋白A-1缺乏,胆固醇代谢中酶活性降低,则加速动脉硬化和冠心病的发生。2.高密度脂蛋白可抑制低密度脂蛋白与血管内皮细胞及平滑肌细胞受体的结合(竞争细胞表面脂蛋白受体),从而减少了低密度脂蛋白在细胞中的堆积。载脂蛋白B 存在于低密度脂蛋白的表面,细胞识别和摄取LDL主要通过识别载脂蛋白B实现。所以,载脂蛋白B增多时,即使LDL水平正常,也可使冠心病发病率增高。什么叫血脂异常?高血脂是指血液中胆固醇和甘油三脂过高或高密度脂蛋白胆固醇过低,即通常所称的“高脂血症”,现代医学称之为血脂异常,因为高密度脂蛋白胆固醇是“冠心病的保护因子”不能过低;同理通常所称“降脂治疗”亦称“调脂治疗”。

载脂蛋白a正常范围是多少

载脂蛋白a正常范围是10-140Mmol/L,载脂蛋白a1偏低的原因主要为肝脏功能受损。载脂蛋白a1偏低常见于患有动脉粥样硬化、糖尿病、高脂蛋白血症等疾病的患者。低于0.5g/L表明存在脂代谢紊乱和用于饮食治疗的观测。

常规测定的血清载脂蛋白有哪几项?其临床意义如何?

常规测定血清载脂蛋白有载脂蛋白AⅠ(ApoAⅠ)及载脂蛋白B(ApoB)。
ApoAⅠ为HDL的主要结构蛋白(约占HDL总蛋白的65%),ApoB为LDL的主要结构蛋白(约占LDL总蛋白的98%)。所以,ApoAⅠ和ApoB的测定可直接反映HDL,和LDL的含量与功能。ApoAⅠ缺乏症(Tangier病)属常染色体隐性遗传,血清中几乎无ApoAⅠ、AⅡ和HDL,患者能合成与正常人不同的相对分子质量和组成的ApoAⅠ,但在体内迅速分解代谢,中年以后发生冠心病者较多见。
ApoAⅠ下降和ApoB增高者常易患冠心病、未控制的糖尿病、肾病综合征、营养不良、活动性肝炎和肝功能低下等,ApoAⅠ/ApoB比值作为良好的心血管疾病的危险性指标,被临床工作者日益重视。

本文地址:http://www.dadaojiayuan.com/zhongyizatan/50254.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章