登录
首页 >> 健康生活

基因组编辑技术CRISPR/Cas9的重大发现

佚名 2024-06-04 23:21:13

基因组编辑技术CRISPR/Cas9的重大发现

2016年08月31日讯 基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。

中国科学家将进行世界首个人类CRISPR基因编辑临床试验

如今,中国科学家即将利用CRISPR-Cas9基因编辑技术将修饰后的细胞注入人体进行人类临床试验,这将是世界上首个在人类机体中进行的CRISPR试验。

进行这项研究的是来自四川大学华西医院(West China Hospital)的研究者Lu You(卢铀),他计划下个月在肺癌患者机体中检测利用CRISPR-Cas9修饰后的细胞的性能,这项临床试验已于7月6日获得了医院伦理审查委员会的批准审核。研究者卢铀,毕业于华西医科大学,长期从事肺癌和食管癌等胸部肿瘤放化疗和分子靶向治疗的临床与基础研究,肿瘤综合治疗及抗肿瘤新药临床试验研究。

这项在中国进行的人类临床试验将会招募转移性的非小细胞肺癌患者和化疗、放疗及其它疗法相继失败的肺癌患者,研究者Lu表示,目前针对癌症的疗法选择非常有限,而基于CRISPR的技术或将为多种疾病的患者带来光明,尤其是那些每天需要治疗的癌症患者。

研究者Lu的研究团队将从招募的患者机体提取免疫细胞-T细胞,随后利用CRISPR-Cas9基因编辑技术敲除细胞中的特殊基因,该基因所编码的蛋白PD-1可以扮演细胞检查点的角色,其可以对细胞发起的特殊免疫反应进行检查,从而抑制健康细胞被攻击。CRISPR-Cas9技术可以同分子向导配对来识别出携带特殊酶类的染色体上的特殊遗传序列。

随后研究者在实验室中扩增被基因编辑的细胞,并将这些修饰后的细胞重新注入到患者的血液中,这些工程化的细胞就可以在患者机体中进行循环并且“游入”癌症组织中;即将在美国进行的临床试验也利用了类似的方法来敲除编码PD-1的基因,同时研究者还计划敲除第二个基因,并在细胞重新注入患者体内之前插入第三个基因。

最后研究者Lu说道,我希望我们是第一个进行这项临床试验的人,更重要的是,我们希望可以通过这项临床试验获得足够多的积极性证据。

科学家质疑巨病毒存在类似CRISPR/Cas的系统

在很多细菌中发现的CRISPR/Cas免疫防御系统,因其能够简单地而又优雅地编辑宿主基因组,而成为时下最火热的生物技术,在近期产生一大批发现。在今年3月,来自法国艾克斯-马赛大学的Didier Raoult和同事们发表一篇论文,指出一种被称作mimivirus的巨病毒(giant virus)拥有一种类似于CRISPR系统的被称作mimivirus噬病毒体抵抗元件(mimivirus virophage resistance element, MIMIVIRE)的噬病毒体抵抗机制(Nature, 10 March 2016, doi:10.1038/nature17146)。而在上个月发表在Virologica Sinica期刊上的一篇论文中,来自法国国家科学研究院(CNRS)的Jean-Michel Claverie和Chantal Abergel对这种观点提出挑战。

Claverie和Abergel在他们的论文中写道,“MIMIVIRE并不类似于CRISPR-Cas系统,并不能够作为一种核酸识别系统发挥作用,也不可能拥有一种真正的适应性免疫系统所拥有的所有性质。”

Claverie和Abergel继续质疑这种噬病毒体抵抗机制到底是不是基于核酸的。他们提出蛋白可能干扰这种抵抗噬病毒体的mimivirus中的噬病毒体复制。

但是,Claverie和Abergel声称这种mimivirus防御机制一点都不像CRISPR系统。首先,mimivirus基因组和噬病毒体复制发生在相同的地方,“这就不可能获得基于核酸的免疫系统”。再者,CRISPR代表着规律间隔性成簇短回文重复序列,而MIMIVIRE序列“并不是规律间隔性的,而且在两侧也不存在可识别的重复序列”。最后,与MIMIVIRE序列相对应的Zamilon序列缺乏被称作前间隔序列邻近基序(protospacer adjacent motif, PAM)的序列,其中细菌宿主通常利用这一序列区分病原体DNA和它们自己的DNA。

利用CRISPR/Cas9让沉默基因不再沉默

CRIPSR/Cas9是细菌天然地用来抵抗病毒感染的一种免疫系统。它允许科学家们在基因组靶位点上精确地导入、移除或替换特异性的DNA片段。迄今为止,CRISPR/Cas9是最为高效的、廉价的和最容易操作的基因编辑工具。然而,科学家们在此之前还不能够高效地利用它激活细胞中的基因。

在一项新的研究中,来自日本北海道大学遗传医学研究所的Toru Kondo团队利用CRISPR/Cas9系统开发出一种强大的方法做到这一点。相关研究结果发表在2016年5月23日那期Angewandte Chemie期刊上,论文标题为“A Powerful CRISPR/Cas9-Based Method for Targeted Transcriptional Activation”。

细胞中的基因拥有它们自己的开关:启动子。当基因的启动子发生甲基化时,该基因就被关闭,或者被沉默。

在这项新的研究中,研究人员想要高效地激活沉默基因(即因启动子发生甲基化被关闭的基因,也就是不发生转录的基因)。他们将一种被称作微同源末端连接(microhomology-mediated end-joining, MMEJ)的DNA修复机制与CRISPR/Cas9组合使用。他们利用CRISPR/Cas9切掉发生甲基化的启动子,然后利用MMEJ插入一个未发生甲基化的启动子,也就是利用基因的开启开关替换它的关闭开关。

研究人员在神经细胞基因OLIG2和胚胎干细胞基因NANOG上使用了这种工具以便测试它在体外培养的细胞中的效率。在5天内,他们发现证据证实这些基因强效地表达。在当体外培养的人胚胎干细胞中利用这种方法激活OLIG2基因时,它们在7天内高效地分化为神经元。

研究人员也发现他们的基因编辑工具可能能够被用来激活其他的发生沉默的启动子。此外,他们发现这一系统并不会导致细胞中其他的非靶向基因发生不想要的突变。这种工具有巨大的潜力被用来操作基因表达,构建基因电路,或者改变细胞命运。

利用CRISPR/Cas9有望靶向清除多种疱疹病毒感染

大多数成年人携带着多种疱疹病毒。在初始的急性感染后,这些病毒在它们的宿主体内建立终生感染,并导致唇疱疹、角膜炎、生殖器疱疹、带状疱疹、传染性单核细胞增多症和其他疾病。一些疱疹病毒还能够导致人们患上癌症。在潜伏性感染阶段,这些病毒长时间地保持潜伏状态,但是保持偶尔重新激活的能力。这种重新激活有可能导致人们患病。一项新的研究提示着利用CRISPR/Cas9基因组编辑技术攻击疱疹病毒DNA能够抑制病毒复制,而且在一些情形下,能够导致病毒清除。相关研究结果于2016年6月30日发表在PLoS Pathogens期刊上,论文标题为“CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections”。

在这项新的研究中,来自荷兰乌德勒支大学医学中心的Robert Jan Lebbink和同事们认为应当能够靶向作用于被感染的人细胞中的潜伏性疱疹病毒DNA并让它们的DNA发生突变,因而潜在地阻止疱疹病毒相关的疾病。为了测试这一点,他们设计出特异性的向导RNA(gRNA),即与疱疹病毒基因组的关键部分互补的且发挥着分子地址作用的短RNA片段。这些gRNA当与CRISPR/Cas9系统中发挥着分子剪刀作用的Cas9结合在一起时,应当能够诱导在疱疹病毒DNA的特定位点上发生切割,随后诱导它们的DNA发生突变,从而破坏这些病毒。

通过采取这种方法,研究人员研究了三种不同的疱疹病毒成员:导致唇疱疹和疱疹性角膜炎的1型单纯疱疹病毒(HSV-1);人巨细胞病毒(HCMV),最为常见的病毒性出生缺陷病因(当这种病毒由妈妈传播给胎儿时);导致传染性单核细胞增多症和多种癌症类型的爱泼斯坦-巴尔病毒(Epstein-Barr virus, EBV, 也被称作EB病毒)。

研究人员总结道,“我们观察到将EBV从被潜伏感染的肿瘤细胞中高度有效地和特异性地清除出来,以及破坏HSV-1和HCMV在人细胞中的复制。”他们继续说道,“尽管CRISPR/Cas9并不能够高效地对潜伏性HSV-1进行基因组编辑,但是一旦潜伏性HSV-1重新激活,利用HSV-1特异性的gRNA能够高效地阻止HSV-1复制。”他们希望,他们的结果“可能允许设计出高效的治疗策略靶向潜伏性感染和增殖性感染期间的人疱疹病毒。”

什么是CRISPR/Cas9技术

1.什么是CRISPR/Cas9?
CRISPR----Clustered
Regularly
Interspaced
Short
Palindromic
Repeats
是在细菌和古细菌中广泛存在的成簇的、有规律的、间隔的短回文重复序列。
07年,发现细菌可以用CRISPR系统抵抗噬菌体的入侵;08年,发现细菌的
CRIS

CRISPR-Cas9 原理

CRISPR/Cas技术是什么?

CRISPR/Cas系统是一种原核生物的免疫系统,用来抵抗外源遗传物质的入侵,比如噬菌体病毒和外源质粒。同时,它为细菌提供了获得性免疫:这与哺乳动物的二次免疫类似,当细菌遭受病毒或者外源质粒入侵时,会产生相应的“记忆”,从而可以抵抗它们的再次入侵。CRISPR/Cas系统可以识别出外源DNA,并将它们切断,沉默外源基因的表达。这与真核生物中RNA干扰(RNAi)的原理是相似的。正是由于这种精确的靶向功能,CRISPR/Cas系统被开发成一种高效的基因编辑工具。在自然界中,CRISPR/Cas系统拥有多种类别,其中CRISPR/Cas9系统是研究最深入,应用最成熟的一种类别。CRISPR/Cas9是继锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代“基因组定点编辑技术”。凭借着成本低廉,操作方便,效率高等优点,CRISPR/Cas9迅速风靡全球的实验室,成为了生物科研的有力帮手。在TALEN和ZFN的时代,科学家们往往要花费重金,把基因编辑工作交给生物公司。而现在,在实验室里,人们就可以使用CRISPR/Cas9技术轻松的实现基因编辑。

CRISPR/Cas9如何工作?

CRISPR簇是一个广泛存在于细菌和古生菌基因组中的特殊DNA重复序列家族,充当了防御外源遗传物质的“基因武器”。CRISPR全称Clustered Regularly Interspersed Short Palindromic Repeats—成簇的规律间隔的短回文重复序列,分布在40%的已测序细菌和90%的已测序古细菌当中。图1展示了完整的CRISPR位点的结构。其中,CRISPR序列由众多短而保守的重复序列区(repeats)和间隔区(spacer)组成。重复序列区含有回文序列,可以形成发卡结构。而间隔区比较特殊,它们是被细菌俘获的外源DNA序列。这就相当于细菌免疫系统的“黑名单”,当这些外源遗传物质再次入侵时,CRISPR/Cas系统就会予以精确打击。而在上游的前导区(leader)被认为是CRISPR序列的启动子。另外,在上游还有一个多态性的家族基因,该基因编码的蛋白均可与CRISPR序列区域共同发生作用。因此,该基因被命名为CRISPR关联基因(CRISPR associated,Cas)。目前已经发现了Cas1-Cas10等多种类型的Cas基因。Cas基因与CRISPR序列共同进化,形成了在细菌中高度保守的CRISPR/Cas系统。

那么,CRISPR序列是如何与Cas蛋白配合来执行防御功能的呢?整个过程大体分为3步。

1.外源DNA俘获:“黑名单”登记

简单来说,CRISPR/Cas系统在这一步实现了一个“黑名单登记”功能。CRISPR/Cas系统将识别出入侵者的“名字”(PAM)并找到它的“身份证”(原间隔序列),然后把入侵者身份信息作为“档案”(间隔序列)记录到“黑名单”(CRISPR序列)中。图2展示了第一阶段的工作原理。当噬菌体病毒首次入侵宿主细菌,病毒的双链DNA被注入细胞内部。CRISPR/Cas系统会从这段外源DNA中截取一段序列作为外源DNA的“身份证”,然后将其作为新的间隔序列被整合到基因组的CRISPR序列之中。因此,这段与间隔序列对应的“身份证”被称为原间隔序列(protospacer)。然而,“身份证”的选取并不是随机的。原间隔序列向两端延伸的几个碱基都十分保守,被称为原间隔序列临近基序(protospacer adjacent motif,PAM)。PAM通常由NGG三个碱基构成(N为任意碱基)。病毒入侵时,Cas1和Cas2编码的蛋白将扫描这段外源DNA,并识别出PAM区域,然后将临近PAM的DNA序列作为候选的原间隔序列。随后,Cas1/2蛋白复合物将原间隔序列从外源DNA中剪切下来,并在其他酶的协助下将原间隔序列插入临近CRISPR序列前导区的下游。然后,DNA会进行修复,将打开的双链缺口闭合。这样一来,一段新的间隔序列就被添加到了基因组的CRISPR序列之中。

2. crRNA合成:”军火“制造

战争总需要武器,CRISPR/Cas系统也要制造足够的”军火“来打击入侵者。目前的研究表明,CRISPR/Cas系统共有三种方式(Type Ⅰ、Ⅱ、Ⅲ)来制造”军火“。CRISPR/Cas9系统属于Type Ⅱ,是目前最成熟也是应用最广的类型。因此,图3将重点介绍CRISPR/Cas9的原理。当入侵者到来,CRISPR序列会在”指挥官“(前导区)的调控下转录出两种“军火材料”:pre-CRISPR-derived RNA (pre-crRNA)和trans-acting crRNA(tracrRNA)。其中,tracrRNA是由重复序列区转录而成的具有发卡结构的RNA,而pre-crRNA是由整个CRISPR序列转录而成的大型RNA分子。随后,pre-crRNA,tracrRNA以及Cas9编码的蛋白将会组装成一个小型“兵工厂”。它将根据入侵者的类型,选取对应的“身份证”(间隔序列RNA),并在RNase Ⅲ的协助下对这段间“身份证”进行剪切,最终形成一段短小的crRNA(包含单一种类的间隔序列RNA以及部分重复序列区)。crRNA,Cas9以及tracrRNA组成的复合物,就是最终的“战斗武器”。

3.靶向干扰:强大火力,精确打击

武器已经制造完成,战争就要打响。图4展示了靶向干扰的过程。Cas9/tracrRNA/crRNA复合物就像是一枚制导导弹,可以对入侵者的DNA进行精确的打击。这个复合物将扫描整个外源DNA序列,并识别出与crRNA互补的原间隔序列。这时,复合物将定位到PAM/原间隔序列的区域,DNA双链将被解开,形成R-Loop。crRNA将与互补链杂交,而另一条链则保持游离状态。随后,Cas9蛋白发起猛烈攻势,其HNH酶活性将剪切crRNA互补的DNA链,而其RuvC活性位点将剪切非互补链。最终,Cas9强大的火力使双链断裂(DSB)形成,外源DNA的表达被沉默,入侵者被一举歼灭。

如何应用CRISPR/Cas技术?

CRISPR/Cas是进行基因编辑的强大工具,可以对基因进行定点的精确编辑。在向导RNA(guide RNA,gRNA)和Cas9蛋白的参与下,待编辑的细胞基因组DNA将被看作病毒或外源DNA,被精确剪切。但是,CRISPR/Cas9的应用也有一些限制条件。首先,待编辑的区域附近需要存在相对保守的PAM序列(NGG)。其次,向导RNA要与PAM上游的序列碱基互补配对。图5展示了最基础的两种CRISPR/Cas9技术应用。以基因敲除为例,在待敲除基因的上下游各设计一条向导RNA(向导RNA1,向导RNA2),将其与含有Cas9蛋白编码基因的质粒一同转入细胞中,向导RNA通过碱基互补配对可以靶向PAM附近的目标序列,Cas9蛋白会使该基因上下游的DNA双链断裂。而生物体自身存在着DNA损伤修复的应答机制,会将断裂上下游两端的序列连接起来,从而实现了细胞中目标基因的敲除。如果在此基础上为细胞引入一个修复的模板质粒(供体DNA分子),这样细胞就会按照提供的模板在修复过程中引入片段插入或定点突变。这样就可以实现基因的替换或者突变。对受精卵细胞进行基因编辑,并将其导入代孕母体中,可以实现基因编辑动物模型的构建。随着研究的深入,CRISPR/Cas技术已经被广泛的应用。除了基因敲除,基因替换等基础编辑方式,它还可以被用于基因激活,疾病模型构建,甚至是基因治疗。

CRISPR-Cas9基因编辑技术简介

CRISPR-Cas9是继ZFN、TALENs等基因编辑技术推出后的第三代基因编辑技术,短短几年内,CRISPR-Cas9技术风靡全球, 成为现有基因编辑和基因修饰里面效率最高、最简便、成本最低、最容易上手的技术之一,成为当今最主流的基因编辑系统。

一、什么是CRISPR-Cas系统

CRISPR-Cas系统是原核生物的一种天然免疫系统 。某些细菌在遭到病毒入侵后,能够把病毒基因的一小段存储到自身的 DNA 里一个称为 CRISPR 的存储空间。当再次遇到病毒入侵时,细菌能够根据存写的片段识别病毒,将病毒的DNA切断而使之失效。

C RISPR-Cas系统包含CRISPR基因座和Cas基因(CRISPR关联基因)两部分。

[图片上传失败...(image-890ed-1634820207331)]

1、CRISPR(/'kr?sp?r/)是原核生物基因组内的一段重复序列 。CRISPR全称Clustered Regularly Interspersed Short Palindromic Repeats(成簇的规律性间隔的短回文重复序列)。分布在40%的已测序细菌和90%的已测序古细菌当中。 (注:生活在深海的火山口、陆地的热泉以及盐碱湖等极端环境中,有一些独特结构的细菌,称为古细菌)

CRISPR基因序列主要由前导序列(leader)、重复序列(repeat)和间隔序列(spacer)构成

①前导序列 :富含AT碱基,位于CRISPR基因上游, 被认为是CRISPR序列的启动子

②重复序列 :长度约20–50 bp碱基且包含5–7 bp回文序列,转录产物可以形成发卡结构, 稳定RNA的整体二级结构

③间隔序列 是被细菌俘获的外源DNA序列 。这就相当于细菌免疫系统的“黑名单”,当这些外源遗传物质再次入侵时,CRISPR/Cas系统就会予以精确打击。

2、Cas基因位于CRISPR基因附近或分散于基因组其他地方,该基因编码的蛋白均可与CRISPR序列区域共同发生作用。因此,该基因被命名为CRISPR关联基因( CRISPR associated,Cas )。

Cas基因编码的Cas蛋白在防御过程中至关重要,目前已经发现了Cas1-Cas10等多种类型的Cas基因。

依据Cas蛋白在细菌免疫防御过程中参与的角色,目前将CRISPR-Cas系统分为两大类。

第一大类 :它们切割外源核酸的效应因子为多个Cas蛋白形成的复合物,包括Ⅰ型、Ⅲ型和Ⅳ型。

第二大类 :它们的作用因子是比较单一的Cas蛋白,比如Ⅱ型的Cas9蛋白和Ⅴ型的Cpf蛋白。

目前,被最为广泛应用的CRISPR系统是II型CRISPR-Cas系统,也就是CRISPR-Cas9系统。

二、CRISPR-Cas9的作用原理

对于CRISPR-Cas9的作用机理可以分为三个阶段来理解。

1、第一阶段:CRISPR 的高度可变的间隔区的获得 俘获外源DNA,登记“黑名单”

CRISPR 的高度可变的间隔区获得,其实就是指外来入侵的噬菌体或是质粒DNA 的一小段DNA 序列被整合到宿主菌的基因组,整合的位置位于CRRSPR 的5' 端的两个重复序列之间。因此,CRISPR 基因座中的间隔序列从5' 到3' 的排列也记录了外源遗传物质入侵的时间顺序。

新间隔序列的获得可能分为三步:

第1步:Cas1和Cas2编码的蛋白将扫描入侵的DNA,并识别出PAM区域,然后将临近PAM的DNA序列作为候选的原型间隔序列。

[图片上传失败...(image-b6e38b-1634820207330)]

第2步:Cas1/2蛋白复合物将原间隔序列从外源DNA中剪切下来,并在其他酶的协助下将原间隔序列插入临近CRISPR序列前导区的下游。

第3步:DNA会进行修复,将打开的双链缺口闭合。这样一来,一段新的间隔序列就被添加到了基因组的CRISPR序列之中。

[图片上传失败...(image-4831b9-1634820207330)]

2、第二阶段:CRIPSR 基因座的表达(包括转录和转录后的成熟加工)

CRISPR序列在前导区的调控下转录产生pre-crRNA( crRNA的前体 ),同时与pre-crRNA序列互补的tracrRNA( 反式激活crRNA )也被转录出来。pre-crRNA通过碱基互补配对与tracrRNA形成双链RNA并与Cas9编码的蛋白组装成一个复合体。它将根据入侵者的类型,选取对应的“身份证号码”( 间隔序列RNA ),并在核糖核酸酶Ⅲ( RNaseⅢ )的协助下对这段“身份证”进行剪切,最终形成一段短小的crRNA( 包含单一种类的间隔序列RNA以及部分重复序列区 )。

crRNA,Cas9以及tracrRNA组成最终的复合物,为下一步剪切做好准备。

3、第三阶段:CRISPR/Cas 系统活性的发挥(靶向干扰)

crRNA,Cas9以及tracrRNA组成最终的复合物就像是一枚制导导弹,可以对入侵者的DNA进行精确的打击。这个复合物将扫描整个外源DNA序列,并识别出与crRNA互补的原间隔序列。这时,复合物将定位到PAM/原间隔序列的区域,DNA双链将被解开,形成R-Loop。crRNA将与互补链杂交,而另一条链则保持游离状态。

随后,Cas9蛋白精确的平端切割位点位于PAM上游3个核苷酸位置,形成平末端产物。Cas9蛋白的HNH结构域负责切割与crRNA互补配对的那一条DNA链,而RuvC结构域负责切割另外一条非互补DNA链。最终在Cas9的作用下DNA双链断裂(DSB),外源DNA的表达被沉默,入侵者被一举歼灭。

三、 CRISPR-Cas9基因编辑技术及应用…

tracrRNA-crRNA在被融合为单链向导RNA(sgRNA)时也可以发挥指导Cas9的作用。

CRISPR-Cas9基因编辑技术就是通过人工设计的 sgRNA(guide RNA)来识别目的基因组序列,并引导 Cas9 蛋白酶进行有效切割 DNA 双链,形成双链断裂,损伤后修复会造成基因敲除或敲入等,最终达到对基因组DNA 进行修饰的目的。

CRISPR-Cas9的广泛应用

1、基因敲除(Knock-out)

Cas9可以对靶基因组进行剪切,形成DNA的双链断裂。在通常情况下,细胞会采用高效的 非同源末端连接 方式(NHEJ)对断裂的DNA进行修复。但是,在修复过程中通常会发生碱基插入或缺失的错配现象,造成移码突变,( 移码突变 :是指DNA分子由于某位点碱基的缺失或插入,引起阅读框架变化,造成下游的一系列密码改变,使原来编码某种肽链的基因变成编码另一种完全不同的肽链序列。)使靶标基因失去功能,从而实现基因敲除。为了提高CRISPR系统的特异性,可将Cas9的一个结构域进行突变,形成只能对DNA单链进行切割造成DNA缺口的Cas9 nickase核酸酶。因此想要形成双链断裂的效果可以设计两条sgRNA序列,分别靶向DNA互补的两条链,这样两条sgRNA特异性的结合靶标序列,即可形成DNA断裂,并在修复过程中通过移码突变实现基因敲除

2、基因敲入(Knock-in)

当DNA双链断裂后,如果有DNA修复模板进入到细胞中,基因组断裂部分会依据修复模板进行 同源重组修复 (HDR),从而实现基因敲入。修复模板由需要导入的目标基因和靶序列上下游的同源性序列(同源臂)组成,同源臂的长度和位置由编辑序列的大小决定。DNA修复模板可以是线性/双链脱氧核苷酸链,也可以是双链DNA质粒。HDR修复模式在细胞中发生率较低,通常小于10%。为了增加基因敲入的成功率,目前有很多科学家致力于提高HDR效率,将编辑的细胞同步至HDR最活跃的细胞分裂时期,促进修复方式以HDR进行;或者利用化学方法抑制基因进行NHEJ,提高HDR的效率

3、基因抑制、基因激活(Repression or Activation)

Cas9的特点是能够自主结合和切割目的基因,通过点突变的方式使Cas9的两个结构域RuvC-和HNH-失去活性,形成的dCas9只能在sgRNA的介导下结合靶基因,而不具备剪切DNA的功能。因此,将dCas9结合到基因的转录起始位点,可以阻断转录的开始,从而抑制基因表达;将dCas9结合到基因的启动子区域也可以结合转录抑制/活化物,使下游靶基因转录受到抑制或激活。因此dCas9与Cas9、Cas9 nickase的不同之处在于,dCas9造成的激活或者抑制是可逆的,并不会对基因组DNA造成永久性的改变。

4、多重编辑(Multiplex Editing)

将多个sgRNA质粒转入到细胞中,可同时对多个基因进行编辑,具有基因组功能筛选作用。多重编辑的应用包括:使用双Cas9nickases提高基因敲除的准确率、大范围的基因组缺失及同时编辑不同的基因。通常情况下,一个质粒上可以构建2~7个不同的sgRNA进行多重CRISPR基因编辑。

5、功能基因组筛选

利用CRISPR-Cas9进行基因编辑可以产生大量的基因突变细胞,因此利用这些突变细胞可以确认表型的变化是否是由基因或者遗传因素导致的。基因组筛选的传统方法是shRNA技术,但是shRNA有其局限性:具有很高的脱靶效应以及无法抑制全部基因而形成假阴性的结果。CRISRP-Cas9系统的基因组筛选功能具有高特异性和不可逆性的优势,在基因组筛选中得到了广泛的应用。目前CRISPR的基因组筛选功能应用于筛选对表型有调节作用的相关基因,如对化疗药物或者毒素产生抑制的基因、影响肿瘤迁移的基因以及构建病毒筛选文库对潜在基因进行大范围筛选等。
CRISPR-Cas9基因编辑技术简介 - 知乎 (zhihu.com)

本文地址:http://dadaojiayuan.com/jiankang/301551.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章