2016年09月10日讯 一个改变了的有丝分裂纺锤体,可防止母本和父本DNA的混合,从而产生了一个单亲的后代。那么它可能对印迹和表观遗传学研究有何影响呢?
性可能是神秘的,但从遗传学上来说,接下来会发生什么并不神秘。精子遇到卵子,遗传混合随之而来,然后,承载着母亲和父亲混合遗传属性的下一代就出生了。
这个过程被称为孟德尔遗传,自古以来,正是通过这种方式,有性生殖的生物--从人类、果蝇到恐龙得以繁衍生息。但事实证明,他们不一定要这样。延伸阅读:挑战孟德尔和达尔文定律的基因;自私基因打破百年孟德尔分离定律;Science:当CRISPR技术遇上孟德尔遗传定律。
在《Nature Biotechnology》发表的一项研究中,马克斯普朗克生物物理化学研究所的Judith Besseling和Henrik Bringmann,在秀丽隐杆线虫中描述了一种所谓的“非孟德尔遗传”的策略。修补有丝分裂纺锤体,可破坏在第一个胚胎细胞分裂前发生的母系和父系遗传物质融合。因此,通过这个过程所产生的细胞代表父母其中一方,而不是两方。
瑞士洛桑大学的博士后研究员Alexandra Bezler也研究非孟德尔遗传,她说:“这项研究是开创性的。以前没有人这样做过。”
据Bringmann介绍,该方法具有广泛的应用范围,从育种学和表观遗传学,到合成生物学。“这是一个很好的概念验证,表明通过改变细胞的生物学结构,我们可以制备具有新性能的细胞--并最终制备出动物。”
孟德尔遗传并非Bringmann的研究重点。他的实验室主要集中于睡眠的调节和功能,但在遗传学和细胞生物学的背景下,他还研究有丝分裂纺锤体。
在2011年,Bringmann的研究团队描述了一种方法,通过调整密码子的使用,来调节线虫外源蛋白的表达。基本上,通过细胞的tRNA丰度来指导一个转基因中密码子的使用,该团队发现,他们可以促进或抑制线虫体内的蛋白表达。他们用来测试这种方法的其中一个蛋白是GPR-1--有丝分裂纺锤体的一个组成部分。
在细胞分裂中期,有丝分裂纺锤体由微管和分子马达构建而成,定位在分裂细胞中心的姐妹染色单体,然后在后期把单个染色体分开,从而确保两个子细胞能接收全部的遗传物质。
GPR-1是这一过程的一个临界力调节器。GPR-1缺失可削弱纺锤体拉力;蛋白质的过度表达可能分解结构,从而产生的不是一个双记纺锤体,而是两个单极纺锤体。Bringmann想知道,在胚胎发育的第一次细胞分裂过程中发生了什么。
为了弄清这一点,他和Besseling使用密码子适应性来增加GPR-1在秀丽隐杆线虫生殖细胞中的特异表达。然后他们让一个精子和一个卵子受精,并通过时间推移显微镜观察发生了什么事。据预测,两个原核--每一个都包含一个亲本的遗传物质,被猛拉分离成两个子细胞,才可以融合。因此,从这些胚胎生长起来的线虫,含有来自父亲或母亲的遗传物质,而不是两者兼有。
Bringmann说:“这是一件很酷的事情,并且它是可行的。每当你将这些有丝分裂纺锤体混在一起时,通常会有一种致命的杀伤力。但在这种情况下,遗传物质的分离是如此的干净,因此能使胚胎存活下来。”
为了生动地证明这一点,Besseling和Bringmann用绿色荧光蛋白(GFP)标记GPR-1过表达的雌雄同体,用红色荧光蛋白tdTomato标记正常雄性个体。在正常的孟德尔遗传中,产生的后代是由完全表达两个蛋白(在双色覆盖中它们显示黄色)的细胞构成的。但是当GPR-1过表达时,动物包含的细胞是单色的。
在模式生物中,线虫是独一无二的,因为它有一个定义的和不变的细胞谱系。研究人员已经精确地查明在成虫中哪一个细胞是由哪一个祖细胞产生的,并且他们可以将这些谱系一直追溯到两细胞阶段。当一个线虫受精卵分裂时,它产生了两个细胞,AB和P1。前者产生特定的体细胞组织,包括神经系统;后者产生其余的体细胞组织,以及生殖细胞系。通常情况下,这并不重要,因为每一个细胞都是相同的。但是使用Bringmann的技术,如果AB细胞是父系来源,结果将是,这条线虫具有一个父系的神经系统和母系的配子;如果AB细胞是母系来源(如最常见的情况),则情况可能是相反的。
Bringmann说:“最终,这是克隆动物的一种新方法。”
该小组报道了28%的相对高的致死率,在一些组合中是63%,可能源于一个事实:雄性线虫没有Y染色体--它们是“XO”。作为父系来源的配子没有X染色体,具有父本配子的非孟德尔线虫,在与雄性交配时有50 / 50的机会产生一个完全不包含X染色体的胚胎。这些细胞显然是不能存活的。”
这种方法有几个令人兴奋的应用,特别是遗传学和表观遗传学。例如,它使科学家能够制备嵌合体动物,在这种动物中,相同生物体中的不同组织,是由具有不同表型的父母本产生的。Bringmann说:“在这里,整个基因组,而不是个体突变,是优势所在。”
非孟德尔动物也应该能够为研究遗传印记提供一个平台,某些基因的差异表达取决于它们是母系来源还是父系来源。它们可以被用来研究环境因素对动物后代的影响,一个叫隔代遗传的现象。
据Bringmann介绍,非孟德尔遗传策略应该也适用于其他高等真核生物,包括小鼠,因为GPR-1是高度保守的。事实上,在哺乳动物组织培养物中的初步实验显示,GPR-1过度表达可导致相似的增力,虽然尚未在受精卵中尝试过。
然而,Bezler认为,当研究人员沿着进化阶梯向上爬时,该方法可能不那么有用,因为其他生物并不与线虫共有严格定义的细胞谱系。虽然单个细胞确实是母系或父亲的起源,但整个组织可能会不是。她说:“这将是随机的,在每一种动物中它将是随机的。”这可能会使大规模的分析变得复杂化。
但至少在秀丽隐杆线虫中,Bezler看到了相当大的希望。她说:“我们订购了菌株。我们会用它做一些事情。”
细胞核内由核蛋白组成、能用碱性染料染色、有结构的线状体,是遗传物质基因的载体。
在生物的细胞核中,有一种易被碱性染料染上颜色的物质,叫做染色质。染色体只是染色质的另外一种形态。它们的组成成分是一样的,但是由于构型不一样,所以还是有一定的差别。染色体在细胞的有丝分裂间期由染色质螺旋化形成。用于化学分析的原核细胞的染色质含裸露的DNA,也就是不与其他类分子相连。而真核细胞染色体却复杂得多,由四类分子组成:即DNA,RNA,组蛋白(富有赖氨酸和精氨酸的低分子量碱性蛋白,至少有五种不同类型)和非组蛋白(酸性)。DNA和组蛋白的比例接近于1:1。
正常人的体细胞染色体数目为23对,并有一定的形态和结构。染色体在形态结构或数量上的异常被成为染色体异常,由染色体异常引起的疾病为染色体病。现已发现的染色体病有100余种,染色体病在临床上常可造成流产、先天愚型、先天性多发性畸形、以及癌肿等。染色体异常的发生率并不少见,在一般新生儿群体中就可达0.5%~0.7%,如以我院平均每年3000新生儿出生数计算,其中可能有15~20例为染色体异常者。而在早期自然流产时,约有50%~60%是由染色体异常所致。染色体异常发生的常见原因有电离辐射、化学物品接触、微生物感染和遗传等。临床上染色体检查的目的就是为了发现染色体异常和诊断由染色体异常引起的疾病。
染色体检查是用外周血在细胞生长刺激因子——植物凝集素(PHA)作用下经37℃,72小时培养,获得大量分裂细胞,然后加入秋水仙素使进行分裂的细胞停止于分裂中期,以便染色体的观察;再经低渗膨胀细胞,减少染色体间的相互缠绕和重叠,最后用甲醇和冰醋酸将细胞固定于载玻片上,在显微镜下观察染色体的结构和数量。正常男性的染色体核型为44条常染色体加2条性染色体X和Y,检查报告中常用46,XY来表示。正常女性的常染色体与男性相同,性染色体为2条XX,常用46,XX表示。46表示染色体的总数目,大于或小于46都属于染色体的数目异常。缺失的性染色体常用O来表示。
人体内每个细胞内有23对染色体.包括22对常染色体和一对性染色体. 性染色体包括:X染色体和Y染色体。含有一对X染色体的受精卵发育成女性,而具有一条X染色体和一条Y染色体者则发育成男性。这样,对于女性来说,正常的性染色体组成是XX,男性是XY。这就意味着,女性细胞减数分裂产生的配子都含有一个X染色体;男性产生的精子中有一半含有X染色体,而另一半含有Y染色体。精子和卵子的染色体上携带着遗传基因,上面记录着父母传给子女的遗传信息。同样,当性染色体异常时,就可形成遗传性疾病。男性不育症中因染色体异常引起者约占2%~21%,尤其以少精子症和无精子症多见。
哺乳动物雄性个体细胞的性染色体对为XY;雌性则为XX。
鸟类的性染色体与哺乳动物不同:雄性个体的是ZZ,雌性个体为ZW。
鸭嘴兽有5对性染色体,25种性别。
[编辑本段]历史
1879年,由德国生物学家弗莱明(alther Flemming,1843~1905年)经过实验发现。
1883年美国学者提出了遗传基因在染色体上的学说。
1888年正式被命名为染色体。
1902年,美国生物学家萨顿和鲍维里通过观察细胞的减数分裂时又发现染色体是成对的,并推测基因位于染色体上。
1928年摩尔根证实了染色体是遗传基因的载体,从而获得了生理医学诺贝尔奖。
1956年庄有兴等人明确了人类每个细胞有46条染色体,46条染色体按其大小、形态配成23对,第一对到第二十二对叫做常染色体,为男女共有,第二十三对是一对性染色体。
[编辑本段]染色体的三个关键元素
染色体要确保在细胞世代中保持稳定,必须具有自主复制、保证复制的完整性、遗传物质能够平均分配的能力,与这些能力相关的结构序列是:
1.自主复制DNA序列:
20世纪70年代末首次在酵母中发现。自主复制DNA序列具有一个复制起始点,能确保染色体在细胞周期中能够自我复制,从而保证染色体在世代传递中具有稳定性和连续性。
2 着丝粒DNA序列:
着丝粒DNA序列与染色体的分离有关。着丝粒DNA序列能确保染色体在细胞分裂时能被平均分配到2个子细胞中去。
着丝粒DNA序列特点:(1)一方面在所有的真核生物中它们的功能是高度保守的,另一方面即使在亲缘关系非常相近的物种之间它们的序列也是多样的。(2)绝大多数生物的着丝粒都是由高度重复的串联序列构成的,然而,在着丝粒的核心区域,重复序列的删除,扩增以及突变发生的非常频繁,目前的种种研究表明,重复序列并不是着丝粒活性所必须的。(3)有些科学家提出了可能是DNA的二级结构甚至是高级结构是决定着丝粒位置和功能的因素.即功能的序列无关性。
3.端粒DNA序列:
为一段短的正向重复序列,在人类为TTAGGG的高度重复序列。端粒DNA功能是保证染色体的独立性和遗传稳定性。
染色体的分裂分叁种;一是母钟分裂,这个一般发生在受精卵的早期,人类具体就是从一条受精卵分裂为个体的23对染色体的过程,意思是按照母体蓝图进行子代分裂,被分裂的23对染色体分别可以造出各种组织器官,如果第一条是造肝的,那么它上面的所有造肝的基因片段都被打开,相反其它器官的制造信息都被关闭,这个过程母体蓝图染色体要分裂4次(按几何级数分裂);二是子钟分裂,按照母体蓝图分裂的23对人类染色体已经在“母钟分裂”过程中分别被打开,它们各自按照各自的“子代蓝图”进行下面造器官的分裂,一个个有机的器官从此被造出,并且开始发挥各自的功能,这个过程子体蓝图染色体要分裂24次(个物种染色体的不同,其分裂的次数也不同,不过一个总的原则是按染色体数分裂),在24次分裂后,一个完整的人体就被造出来;三是孙钟分裂,一个独立的人体,在生长发育的过程中,还有一些器质性和功能性的东西没有出现,所以必须再打开,进行再分裂。比如七岁儿童脱牙,十多岁少年具有生育能力,有些遗传病到一定时候的发作,等等。
对应三种分裂,必须有三种控制分裂发生的手段。母钟分裂是“端点(又叫端粒)控制体系”,这种分裂的原始触发点在外界,比如飘荡在空气中的细菌,它只要没有接触食物或易感物,就永远是不产生分裂的原命(见百度词条“双命”),一旦接触,在端点的作用下就开始母钟分裂。子钟分裂是受制于子钟染色体的端点,与外界刺激无关。孙钟染色体分裂受制于染色体外相对应的一些蛋白质,它们的功能仅仅是到一定时间将这个包含某信息的片段打开。
依此看来,染色体就是人体的生物钟。所以我们将第一条受精卵叫“母钟”,将母钟分裂出来的23对染色体叫子钟,将23对染色体造出的各种组织器官所包含的染色体叫“孙钟”,改变子钟孙钟的染色体都不可以改变遗传,只有改变母钟的基因才可以造成“变异”。
染色体可以携带“遗传基因”但是不能传递“打开信息”,打开某个基因段的所有信息都是通过染色体端点或染色体外的蛋白质发挥作用才完成分裂或复制的。分裂是染色体整体的,复制是染色体某个基因片段的。
性染色体的发现
遗传的染色体学说的证据来自于这样的实验,一些特殊基因的遗传行为和性染色体(sex chromosome)传递的关系。性染色体在高等真核生物的两种性别中是不同的。性染色体的发现为Sutton-Boveri的学说提供了一个实验证据。
在孟德尔以前(1891年)德国的细胞学家亨金(Henking,H)曾经用半翅目的昆虫蝽做实验,发现减数分裂中雄体细胞中含11对染色体和一条不配对的单条染色体,在第一次减数分裂时,它移向一极,亨金无以为名,就称其为“X”染色体。后来在其它物种的雄体中也发现了“X”染色体。
1900年麦克朗(McClung, C.E)等就发现了决定性别的染色体。他们采用的材料多为蚱蜢和其它直翅目昆虫。1902年麦克朗发现了一种特殊的染色体,称为副染色体(accessory chromosome)。在受精时,它决定昆虫的性别。1906年威尔逊(Wilson, E.B)观察到另一种半翅目昆虫(Proteror)的雌体有6对染色体,而雄性只有5对,另外加一条不配对的染色体,威尔逊称其为X染色体,其实雌性是有一对性染色体,雄性为XO型。
在1905年斯蒂文斯(Stevens, N)发现拟步行虫属(Tenebrio molitor)中的一种甲虫雌雄个体的染色体数目是相同的,但在雄性中有一对是异源的,大小不同,其中有一条雌性中也有,但是是成对的;另一条雌性中怎么也找不到,斯蒂文斯就称之为Y染色体。在黑腹果蝇中也发现了相同的情况,果蝇共有4对染色体,在雄性中有一对是异形的染色体。在1914年塞勒(Seiler,J)证明了在雄蛾中染色体都是同形的,而在雌蛾中有一对异形染色体。他们根据异形染色体的存在和性别的相关性,发现了性染色体,现在已完全证实了他们的推论是完全正确的。严格地说异形染色体的存在仅是一条线索,而不是证据,不能因为存在异形染色体,就表明其为性染色体。一定要通过实验证明这条染色体上存在决定性别的主要基因,方能定论。
[编辑本段]揭开X-染色体的神秘面纱
2005年3月17日,在Nature杂志上发表的一篇文章宣告基本完成对人类X染色体的全面分析。对X染色体的详细测序是英国Wellcome Trust Sanger研究中心领导下世界各地多所著名学院超过250位基因组研究人员共同完成的,是人类基因组计划的一部分。
从属于NIH的美国国家人类基因组研究院的负责人弗朗西丝.柯林斯博士(Francis S. Collins, Ph.D)表示“对X染色体的详细研究成果代表了生物学和医药学领域进展的一个新的里程碑。新的研究确认了X染色体上有1098个蛋白质编码基因--有趣的是,这1098个基因中只有54个在对应的Y染色体上有相应功能.....[详细]
染色体研究是临床遗传学研究的基础。测序结果表明X染色体包涵多达1100种基因。但另人吃惊的是,与之相关的疾病也有百余种,如X染色体易碎症、血友病、孤独症、肥胖肌肉萎缩病和白血病等。看来这条染色体决不容小视!
X染色体对应的另一半就是Y染色体。人类Y染色体的测序工作也已经完成,并且发现它并没有人们之前想象的那样脆弱。Y染色体上有一个“睾丸”决定基因则对性别决定至关重要。目前已经知道的与Y染色体有关的疾病有十几种。
[编辑本段]染色体及染色体相关疾病
如果将人类基因组比作一本厚重的书,这本书则由23章组成,而每章都有它自己的故事。到目前为止,已经完成基因测序的常染色体还包括5、6、7、9、10、13、14、16、19、20、21、22染色体。染色体疾病的特点是大段的基因缺损或重复而使患者的智力和外观发育甚至身体多个器官发生明显异常,如唐氏综合病和微缺损症。
[编辑本段]基因组测序研究的新进展
基因组研究以国际人类基因组计划为代表,是当今生物技术研究的“热中之热”。人类基因组草图的完成宣告了一个新时代——后基因组时代的到来。目前已经完成基因组测序的动物还有秀丽线虫(1998年)、果蝇(2000年)、狗(2004年)和小鸡(2004年)等。我国研究人员独立完成了水稻、家蚕、鸡、吸血虫等物种的全基因组测序工作。
几年前最好的估计是人类具有10万个基因,而当人类基因组计划完成后,一下子下降为3万个基因。运用目前最流行的4种基因搜索程序对人类基因组全序列进行搜索,“基因智慧”的结果是24500个,“双生扫描”的结果是25600个,“基因身份证”的结果是32400个,“基因扫描”的结果是45000个,而最近更多的人则倾向于是2万个基因。(1)拿人体来说,其生殖细胞中有23条染色体,从现在的研究看到,每条染色体上就是一个DNA大分子,可在这大分子上并没看到有孟德尔所假想的那样的“基因”。如果定要认为“基因”就在DNA分子上,那么细胞核内的23个DNA分子如何能控制人体各种各样数不胜数的性状呢?学者们设想DNA分子能分成许许多多的片段,每个片段就是一个基因(所以把“基因”称为DNA片段),由每个“片段”分别去控制人体各种各样性状。那么,人体上应有多少不同的性状?应分出多少不同的DNA“片段”(基因)呢?现在学者们正在对此进行激烈的争论,有人认为有10万个基因,有人认为6万个,有人认为3万个,有人认为至少有12万个。不管怎么说,这“基因”数大家都会认为至少是在2万个以上,而每个DNA分子上至少有上千个基因。这就是说,每个DNA分子至少要分成上千个“片段”。那么,这种假设能否成立?让我们来思考一些最具体最起码的问题。
①、从人们的研究看到DNA分子本身排列有序,分子中的各原子都有化学键相连,结合紧密,并未分成天然的“片段”,那么要把它们分成上千个片段,且彼此间互不牵连,能独立分离,自由组合,这分开它们,克服化学键作用的力在哪儿?
②、即便DNA能分成“片段”,那么当DNA分子分成上千个片段后,它还是不是一个完整的分子?它到底是以一个完整的分子发挥作用,产生功能,还是它本身没有功能,只让它上面的“片段”各行其是,各自将各不相同的所谓遗传信息“转录”给RNA,再“转译”给蛋白质,从而各自操纵生物五花八门的性状?从常识看,任何一个分子(无论有机物或无机物分子)都有作为分子的特有功能,而不可能分成“片段”,若要在外力的作用下,强行分成“片段”,其性质也完全变了,DNA分子能例外吗?
③、退一万步说,即便DNA分子不仅能自由地分成上千个片段,而且每个片段也能独自操纵蛋白质,那么在受精卵细胞内有上万的片段(基因),当它们各自发挥“功能”而又共同操纵一个个体的发育时,彼此不“打架”,不相互干扰吗?如何能使个体有条不紊的发育?仅靠几个“调节基因”、“操纵基因”或别的什么特殊“基因”来起作用能行吗?再说它们本身又受谁调节、操纵?
④、我们再来看生物的性状。每一个活的生物个体,都是一个不可分割的统一整体,机体的各部之间,即所有的“性状”之间,都是相互关联的。拿人来说,人的力气大小,跑步的快慢等性状,可直接看到它们与全身的健康情况、平时的锻炼情况等直接相关,不是由某一“基因”能单独控制得了的。即便有些性状看起来似乎只由某一器官控制,譬如人的嗓音,有的尖(锐),有的钝,这似乎只与声带有关,但实际它却与体内的雌雄激素等都有关,以前的太监,作了阉割手术后,其嗓音也会起变化。再有,各种性状也是随内外环境的变化而变化的。人的皮肤颜色不仅受阳光照射的影响,也受自身内在状况的影响,有的病人脸色发青、发黄或苍白等。尤其是人的舌,其舌质与舌苔随时随身体状况的变化而有明显变化(中医由此而查知人体的疾病与健康状况),从这里更可直接看到人体的局部与整体是息息相关的,不是彼此独立互不影响的。
只怕正是这无数的事实与种种的问题也促使基因理论的学者们思考,因而对基因概念不断进行修改(称其为“发展”),只是,发展到后来的基因概念是怎样的呢?在《基因概念的发展》(自然杂志,1979,2)一文中所述的概念却与孟德尔所假设的概念完全不同了。孟德尔假设的基因概念是:基因间互不牵连,能独立分离,自由组合。一个基因控制一个性状,且不因环境的变化而改变,即能稳定的遗传。而文中所述发展了的概念却是:“基因间形成相互制约的统一整体,每个基因是这个整体中的一个组成部分。”“一个基因可以影响许多性状,许多基因影响同一性状”。并且“是与内外环境相互作用的”。我们看,这发展了的概念却正好是对孟德尔两规律进行否定:既然称“基因间形成为相互制约的统一整体”,那它就不可能互不牵连,独立分离,自由组合。尤其是“一个基因可以影响许多性状,许多基因影响同一性状。”这就更不可能按纯数学的排列组合关系推导出后代的性状及数量比。
“基因”概念的发展不仅直接否定了遗传学的“两基本规律”,而且从理论上讲也使“基因工程”无法下手操作,因为按原有的基因概念:一个基因控制一个性状,且互不牵连,那么通过对“基因”的剪接、重组,就可创造出新物种来。而发展了的概念却说“一个基因可以影响许多性状,许多基因影响同一性状”,那么如何能下手将控制所需性状的基因切割下来,而不影响其它性状呢?
其实,不仅发展后的基因概念使“基因工程”无法下手操作,就是原有的基因概念,要下手切割基因,从逻辑上也说不过去,我们就拿孟德尔假设的控制碗豆(茎)高矮的基因来说,如果真有高、矮基因,它们又可以被切割出来,那么当人们把它们切割下来后,这碗豆还有没有高矮?若没有了高矮,这会是什么东西?若变成了别的东西,那这基因控制的就不仅仅是高矮,而是整个植株的状况!若说还有另一种情况:出现了新高矮,那这控制新高矮的基因又从何来?
自然,在这方面我们还可以提出许多基因理论无法解释、无法自圆其说的问题来,但无需再多提,下面我们从另外的角度来分析。
(2)由于DNA有忠实的复制性,因而确定“基因”在DNA上,DNA是遗传物质。可是人们不仅看到DNA与RNA都有忠实的复制性,近年来,还看到蛋白质也有忠实的复制性。中国科学院昆明动物研究所研究员刘次全,还作出了蛋白质复制,氨基酸配对模型。那么当它们几者都有复制性时,这“基因”该确定在何处?再有,原来以为蛋白质没有复制性,因而认为需听从DNA的遗传指令,现在蛋白质自身有复制性时,它还听不听DNA指令?
还有,现在人们还看到一些无机物小分子也有复制性,也就是说复制性并不是生物的特有性质,决定生物与非生物有不同本质的地方并不在这儿。
(3)从世界六国科学家联手合作的“人类基因组计划”所公布的一些资料看,也显示了“基因”理论的种种矛盾与自我否定。例如,按照基因决定性状的理论,人与人之间各种“性状”的明显差异,尤其是不同人种之间的巨大差异,应该在DNA上能直接反映出来。然而,资料上显示的却相反:“地球上的每个人与所有的其他人共享99.99%的相同的基因密码。来自不同人种的人,比来自同一人种的人,在基因上有更多的相似之处。”
现在科学家们也在进一步反思与修改“基因”理论:“一个基因等于一个疾病或一个基因制造一个关键蛋白质的概念正在消失。”“停止一次只考虑一个基因的习惯,开始试图把集合作为一个复杂系统来一起思考。”的确,科学家们通过对“人类基因组计划”的实施,其认识又进了一步,但要真正走出误区,还必须认识错误之根源。
(4)认为DNA揭示了生命的本质及奥秘,那么,DNA的本质特征是什么?即是忠实的复制性(不变性)与变异无规律性。由此会得出什么结论?前面提到的雅克·莫诺,他在书中说:这忠实的复制性是“最根本的生物不变量”,“生物的一切属性都是以这种基本的分子不变性为基础”,它“抵制一切变革,一切进化。”这难道就是生物的本质与奥秘?由此怎不会得出我们前面所例举的那些荒谬结论?
这“忠实的复制性”,实际是一种机械的、死的,连非生物也具有的特性,生物所具有的强大的生命活力,不断变化发展的特性,尤其是人所具有的无限的学习、认知、应变、创造等等能力,从DNA里丝毫体现不出来,也没任何“基因”能操纵得了。
“变异无规律性”,这不仅不是生物的特性,在非生物物质里也找不到,宇宙万事万物都有其变化的规律性,我们研究任何学问都是研究那门学问中物质的运动变化规律性。这DNA所具有的“基本特性”,是与生物所具有的最本质的特性完全相反的。人们会问:孟德尔试验中所出现的性状变化,难道不是事实?难道没有它的物质基础?难道不需要人们去寻找与认识其物质基础(实体)?
迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。
基因工程的前景科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。
生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。
生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。
美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。
人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。
人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。
科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。
人类基因工程的开展使破译人类全部DNA指日可待。
信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。
人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯·克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分之一世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。
继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。
基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。
基因工程大事记
1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。
1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。
1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。
1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。
1969年 科学家成功分离出第一个基因。
1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。
1983年 科学家首次培育出世界第一个转基因植物转基因烟草。
1988年 K.Mullis发明了PCR技术。
1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。
1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。
1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。
1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。
1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。
2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。
2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。
2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。
2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。
2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。
2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。
科学家首次公布人类基因组草图“基因信息”。
基因研究 各国争先恐后 基因时代的全球版图
让我们看一下在新世纪到来时,世界各国的基因科学研究状况。
英国:早在20世纪80年代中期,英国就有了第一家生物科技企业,是欧洲国家中发展最早的。如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。
德国:德国政府认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款1.5亿马克,成立了3个生物技术研究中心。此外,政府还计划在未来5年中斥资12亿马克,用于人类基因组计划的研究。1999年德国研究人员申请的生物技术专利已经占到了欧洲的14%。
法国:法国政府在过去10年中用于生物技术的资金已经增加了10倍,其中最典型的项目就是1998年在巴黎附近成立的号称“基因谷”的科技园区,这里聚集着法国最有潜力的新兴生物技术公司。另外20个法国城市也准备仿照“基因谷”建立自己的生物科技园区。
西班牙:马尔制药公司是该国生物科技企业的代表,该公司专门从海洋生物中寻找抗癌物质。其中最具开发价值的是ET-743,这是一种从加勒比海和地中海的海底喷出物中提取的红色抗癌药物。ET-743计划于2002年在欧洲注册生产,将用于治疗骨癌、皮肤癌、卵巢癌、乳腺癌等多种常见癌症。
印度:印度政府资助全国50多家研究中心来收集人类基因组数据。由于独特的“种姓制度”和一些偏僻部落的内部通婚习俗,印度人口的基因库是全世界保存得最完整的,这对于科学家寻找遗传疾病的病理和治疗方法来说是个非常宝贵的资料库。但印度的私营生物技术企业还处于起步阶段。
日本:日本政府已经计划将明年用于生物技术研究的经费增加23%。一家私营企业还成立了“龙基因中心”,它将是亚洲最大的基因组研究机构。
新加坡:新加坡宣布了一项耗资6000万美元的基因技术研究项目,研究疾病如何对亚洲人和白种人产生不同影响。该计划重点分析基因差异以及什么样的治疗方法对亚洲人管用,以最终获得用于确定和治疗疾病的新知识;并设立高技术公司来制造这一研究所衍生出的药物和医疗产品。
中国:参与了人类基因组计划,测定了1%的序列,这为21世纪的中国生物产业带来了光明。这“1%项目”使中国走进生物产业的国际先进行列,也使中国理所当然地分享人类基因组计划的全部成果、资源与技术。
基因工程与农牧业、食品工业
运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。
1.转基因鱼
生长快、耐不良环境、肉质好的转基因鱼(中国)。
2.转基因牛
乳汁中含有人生长激素的转基因牛(阿根廷)。
3.转黄瓜抗青枯病基因的甜椒
4.转鱼抗寒基因的番茄
5.转黄瓜抗青枯病基因的马铃薯
6.不会引起过敏的转基因大豆
7.超级动物
导入贮藏蛋白基因的超级羊和超级小鼠
8.特殊动物
导入人基因具特殊用途的猪和小鼠
9.抗虫棉
苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。
[编辑本段]基因工程与环境保护
基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。
利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。
基因工程与环境污染治理
基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。
(通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。)
基因治疗可待 医学革命到来
“基因”释意 现在我们通用的“基因”一词,是由“gene”音译而来的。基因就是决定一个生物物种的所有生命现象的最基本的因子。科学家们认为这个词翻译得不仅音顺,意义也贴切,是科学名词外语汉译的典范。基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。
用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。
我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。
无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。
可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。
[编辑本段]基因工程将使传统中药进入新时代
5月13日 13日参加“中药与天然药物”国际研讨会的中国专家认为,转基因药用植物或器官研究、有效次生代谢途径关键酶基因的克隆研究、中药DNA分子标记以及中药基因芯片的研究等,已成为当今中药研究的热点,并将使传统中药进入一个崭新的时代。
据北京大学天然药物及仿生学药物国家重点实验室副主任果德安介绍,转基因药用植物或器官和组织研究是中国近几年中药生物技术比较活跃的领域之一。
在转基因药用植物的研究方面,中国医学科学院药用植物研究所分别通过发根农杆菌和根癌农杆菌诱导丹参形成毛状根和冠瘿瘤进而再分化形成植株,他们将其与栽培的丹参作了形态和化学成分比较研究,结果发现毛状根再生的植株叶片皱缩、节间缩短、植株矮化、须根发达等;而冠瘿组织再生的植株株形高大、根系发达、产量高,丹参酮的含量高于对照,这对丹参的良种繁育,提高药材质量具有重要意义。
果德安说,研究中药化学成分的生物合成途径,不仅可以有助于这些化学成分的仿生合成,而且还可以人为地对这些化学成分的合成进行生物调控,有利于定向合成所需要的化学成分。国内有关这方面的研究已经开始起步。
据了解,中国在中药研究中生物技术应用方面的研究已经渐渐兴起,有些方面如药用植物组织与细胞培养,已积累了二三十年的经验,理论和技术都相当成熟,而且在全国范围内已形成了一定的规模。其中,中药材细胞工程研究正处于鼎盛时期。
果德安介绍说,面对许多野生植物濒于灭绝,一些特殊环境下的植物引种困难等问题,中国科学工作者开始探索通过高等植物细胞、器官等的大量培养生产有用的次生代谢物。研究内容包括通过高产组织或细胞系的筛选与培养条件的优化和通过对次生代谢产物生物合成途径的调控等,达到降低成本及提高次生代谢产物产量的目的。
此外,近来利用植物悬浮培养细胞或不定根、发状根对外源化学成分进行生物转化的研究也在悄然兴起,并已取得了一定的进展。
不仅如此,科学工作者更加重视对次生代谢产物生物合成途径调控的研究。这些研究都取得了令人兴奋的成果,说明中国的药用植物的细胞培养已进入一个崭新的时代。
果德安认为,今后研究的主要方向应集中在价值大且濒危的药用植物的组织细胞培养;对次生代谢产物的产生进行调控;一些重要中药化学成分的生物转化。另外,还应该加强动物药的生物技术研究。
[编辑本段]基因工程与医药卫生
1.基因工程药品的生产:
许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。
微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。
⑴基因工程胰岛素
胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。
将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%!
⑵基因工程干扰素
干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。
基因工程人干扰素α-2b(安达芬) 是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。
⑶其它基因工程药物
人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。
2.基因诊断与基因治疗:
运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。
◆SCID的基因工程治疗
重症联合免疫缺陷(SCID)患者缺乏正常的人体免疫功能,只要稍被细菌或者病毒感染,就会发病死亡。这个病的机理是细胞的一个常染色体上编码腺苷酸脱氨酶(简称ADA)的基因(ada)发生了突变。可以通过基因工程的方法治疗。
基因工程——产最高效药物的转基因动物
转基因动物是一种个体表达反应系统,代表了当今时代药物生产的最新成就,也是最复杂、最具有广阔前景的生物反应系统。就通过转基因动物家畜来生产基因药物而言,最理想的表达场所是乳腺。因为乳腺是一个外泌器官,乳汁不进入体内循环,不会影响到转基因动物本身的生理代谢反应。从转基因动物的乳汁中获取的基因产物,不但产量高、易提纯,而且表达的蛋白经过充分的修饰加工,具有稳定的生物活性,因此又称为“动物乳腺生物反应器”。所以用转基因牛、羊等家畜的乳腺表达人类所需蛋白基因,就相当于建一座大型制药厂,这种药物工厂显然具有投资少、效益高、无公害等优点。
从生物学的观点来看,生物机体对能量的利用和转化的效率是当今世界上任何机械装置所望尘莫及的。因此,通过转基因动物来生产药物是迄今为止人们所能想象得出的最为有效、最为先进的系统。
转基因动物的乳腺可以源源不断地提供目的基因的产生(药物蛋白质),不但产量高,而且表达的产物已经过充分修饰和加工,具有稳定的生物活性。作为生物反应器的转基因运动又可无限繁殖,故具有成本低、周期短和效益好的优点。一些由转基因家畜乳汁中分离的药物蛋白正用于临床试验。
目前,我国在转基因动物的研究领域,已获得了转基因小鼠、转基因兔、转基因鱼、转基因猪、转基因羊和转基因牛。20世纪90年代,国家“863”高技术计划已将转基因羊——乳腺生物反应器的研究列为重大项目。
虽然目前通过转基因动物(家畜)——乳腺生物反应器生产的药物或珍贵蛋白尚未形成产业,但据国外经济学家预测,大约10年后,转基因运动生产的药品就会鼎足于世界市场。那时,单是药物的年销售额就超过250亿美元(还不包括营养蛋白和其他产品),从而使转基因动物(家畜)——乳腺生物反应器产业成为最具有高额利润的新型工业。
2000年12月25日,北京三只转基因羊的问世以及在此之前各种转基因蔬菜、水稻、棉花等,使人们对转基因技术备加关注,那么转基因技术到底是一种什么样的神秘技术呢?
北京市顺义区三高科技农业试验示范区的北京兴绿原生物科技中心总畜牧师田雄杰先生介绍说,转基因动物和转基因羊的意义,不在于羊本身,而是它们身上产出的羊奶可以提取α抗胰蛋白酶,它们中的每一只都可称为一座天然基因药物制造厂,价值连城。
中国工程院院士、上海儿童医院上海医学遗传研究所所长曾溢滔先生认为,转基因动物是指通过实验方法,人工地把人们想要研究的动物或人类基因,或者是有经济价值的药物蛋白质基因,通常称为外源基因,导入动物的受精卵(或早期胚胎细胞),使之与动物本身的基因组整合在一起,这样外源基因能随细胞的分裂而增殖,并能稳定地遗传给下一代的一类动物。
田雄杰先生介绍,制备转基因羊,就是将人的α抗胰蛋白酶基因通过显微操作注进母羊受精卵的雄性细胞核,并使之与羊本身的基因整合起来,形成一体,这种新的基因组可以稳定地遗传到出生的小羊身上。小山羊也成了人工创造的与它们母亲不同的新品系,它们的后代也将带有这种α抗胰蛋白酶基因。这个过程有些类植物的嫁接术。
制备转基因动物是项复杂的工作。目前,在转基因动物研制中,外源基因与动物本身的基因组整合率低,其表达往往不理想,外源基因应有的性质得不到充分表现或不表现。实验运动如牛、羊和猪的整合率一般为1%左右。这种情况的原因可能是多方面的,首先是目的基因的问题,不同的外源基因表达水平不相同,因每个个体而异;其次是外源基因表达载体内部各个部分的组合和连接是否合理等;还有一点更重要,就是外源基因到达动物基因组内整合的位置是否合理。科学家还弄不清楚整合在哪个伴置表达高,哪个位置表达低,人们还无法控制外源基因整合的位置,而只能是随机整合。因此,整合率低也就在所难免。
尽管转基因动物还有一些技术亟待解决,但是转基因动物研究所取得的巨大进展,特别是它在各个领域中的广泛应用,已经对生物医学、畜牧业和药物产业产生了深刻影响。
本文地址:http://dadaojiayuan.com/jiankang/299347.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!