登录
首页 >> 健康生活

著名肿瘤专家Cell发现癌症转移,氧气与T细胞的关联

中医世家 2024-05-30 19:58:32

著名肿瘤专家Cell发现癌症转移,氧气与T细胞的关联

2016年10月06日讯 来自美国国家癌症研究所(NCI)癌症研究中心的一组研究人员发现了肺脏中抗癌免疫反应受到抑制的机制。这一机制与氧气抑制T细胞的抗癌活性有关。采用遗传方法或药物来抑制免疫细胞的氧感应能力可以阻止肺转移。

这一研究成果公布在Cell杂志上,文章的通讯作者是著名肿瘤专家,美国国家癌症研究中心终身研究员Nicholas P. Restifo博士,他在癌症免疫基础研究方面获得了不少重要成果。

转移是大多数癌症死亡的原因。长期以来人们都猜测,癌症转移过程要求扩散癌细胞与细胞环境之间的合作。一个关键的环境组件就是局部的免疫系统,它可以发挥作用击退入侵癌细胞。

研究人员发现T细胞包含一组氧感应蛋白,它们发挥作用限制了肺脏中的炎症。这项新研究表明,氧气也抑制了T细胞的抗癌活性,由此使得扩散至肺脏的癌细胞能够躲避免疫攻击,建立转移灶。

研究小组发现,称作为脯氨酸羟化酶(prolyl hydroxylase domain ,PHD)的氧感应蛋白,在T细胞内发挥作用阻止了对频繁进入肺脏的无害粒子产生过于强烈的免疫反应。这一保护机制也使得循环癌细胞能够在肺脏中找到立脚点。具体说来,研究人员发现PHD蛋白促进了调控T细胞发育,这类T细胞可以抑制免疫系统其它组件的活性。他们还发现PHD蛋白限制了炎症T细胞发育,抑制了它们生成一些癌症杀伤分子的能力。

为了测试PHD蛋白是否在肺脏中促进了肿瘤细胞生长,研究人员利用了T细胞缺失PHD蛋白的一种“基因敲除”小鼠品系。给这些PHD基因敲除小鼠以及未被改变的正常小鼠注入黑色素瘤细胞。令人惊讶地是,尽管正常小鼠肺脏中显示大量的癌性黑色素瘤细胞, T细胞缺失PHD蛋白的小鼠肺脏中几乎没有黑色露的迹象。

鉴于他们发现PHD蛋白抑制了肺脏中的炎症免疫反应,研究人员想知道抑制PHD是否可以提高过继细胞转移的疗效--这种免疫疗法利用了患者自身T细胞识别和攻击癌症的能力。在过继细胞转移中,研究人员从患者肿瘤组织中提取出T细胞,在实验室将它们扩增到极大的数量,随后与一种T细胞生长因子一起通过静脉注入患者体内,希望这些细胞将返回癌症部位并消除它。

在这些实验中,研究小组在存在一种叫做dimethyloxaloylglycine (DMOG)的药物的情况下扩增了抗肿瘤T细胞,DMOG可阻断PHD蛋白的活性。在实验室中,药物处理提高了T细胞的杀癌性能,当给予已建立转移癌的小鼠时,药物处理的这些T细胞比未经处理的T细胞更好地消除了癌症。其他的研究也曾发现DMOG处理可提高人类T细胞的杀癌性能。Restifo小组正在研究将这些结果应用到一些人类过继细胞转移免疫治疗临床试验中。

Restifo 说:“过继细胞转移免疫治疗为操控从患者体内提取的自身T细胞提供了一个独特的机会。尽管我们的研究结果是在小鼠中获得,我们渴望能够测试采用药物、遗传学方法来破坏T细胞中的氧感应机器或调控环境氧气,是否将提高人体中T细胞介导的免疫疗法对癌症的疗效。”

单细胞文献阅读001—Programme of self-reactive innate-like T cell-mediated cancer immunity

文章题目: Programme of self-reactive innate-like T cell-mediated cancer immunity

发表时间及期刊:2022年4月20日 发表在 Nature 期刊

影响因子: 2020/2021: 49.962

主要内容: 在小鼠乳癌模型(PyMT)发现一种新型细胞 先天性杀伤型 T 细胞 (Killer Innate-like T cell, ILTCK)。

这类细胞的特点:

1. 和传统 CD8 T 细胞一样都表达 T 细胞受 体 (T cell receptor,TCR),但其激活不依赖树突细胞(Dendritic Cell,DC),此特性使其更接近先天性淋巴细胞(Innate lymphoid cell)。

2. 不同于传统 CD8 T 细胞,ILTCK 不表达 PD-1 和其他免疫抑制受体,因此不会进入细胞耗竭状态,反而对肿瘤细胞有更强大的细胞毒性(cytotoxicity)。

3. 大部分的传统 T 细胞识别肿瘤新抗原,而 ILTCK 识别肿瘤 原生抗原 ,并且具有显著的组织驻留性(tissue residency)。

研究结果:

1. ILTCKs有一个独特的转录组

为了研究肿瘤浸润性T细胞之间的异质性,我们对来自MMTV-PyMT(PyMT)小鼠乳腺肿瘤组织的CD45+TCRβ+CD8α+细胞进行了单细胞rna测序(scRNA-seq)分析,得到5个不同的簇。主要的marker基因如下:

进一步的进行轨迹推断,我们观察到初始/最近激活的(C1)细胞和耗尽的(C2)细胞之间的大量混合(图1d,e),反映了由慢性刺激驱动的表型变化。相比之下,αβILTCKs(C3)和增殖(C5)细胞与C1分离的距离更远(图1d,e)。在校正了“细胞周期效应”后,最近激活向αβILTCK过渡的假设轨迹仍然与最近激活到耗尽的T细胞分化途径不同(扩展数据图2a,b)。因此, C1细胞要么通过一种独特的分化途径产生C3细胞,要么不是它们的祖细胞。 高表达αβILTCK基因特征的肿瘤浸润性c3样CD8α+T细胞簇在PyMT乳腺肿瘤和小鼠前列腺癌模型(扩展数据图2c-h)以及人类结直肠癌4(扩展数据图2i-k)中重复存在, 共同表明αβILTCK分化程序代表了一种进化上保守的肿瘤引起的免疫反应。

2. ILTCKtcr可以识别未突变的肿瘤抗原

为了探究肿瘤驻留的NK1.1+CD8α+αβILTCKs与传统的PD-1+CD8α+T细胞(PD-1+T细胞)有何不同,我们获得了每个子集使用的配对tcr序列的图谱(扩展数据图3a,补充表1)。然而,来自NK1.1+αβILTCKs和PD-1+T细胞的TCR之间的互补决定区3(CDR3)长度相似(扩展数据图3b)。值得注意的是,我们没有检测到NK1.1+αβILTCKs和PD-1+T细胞所使用的任何TCR对, 这表明它们不是由一个共同的祖细胞发展而来的。

为了确定每个亚群的TCR的特异性,我们使用改进的TCR报告检测系统对它们对原发性PyMT癌细胞进行了反应分析(图2b,扩展数据图3c,补充表2)。33个NK1.1+αβILTCK衍生的tcr中有26个(78.8%)对异源癌细胞表现出显著的反应性(图2c)【 怎么得到的表 】,表明它们识别来自多个小鼠的癌细胞共享的未突变抗原。相比之下,没有一种PD-1+T细胞来源的TCR的反应超过了无关的OT-ITCR建立的背景水平(图2c), 这意味着它们对个体肿瘤特异性新抗原有反应。

当癌细胞缺乏经典的主要组织相容性复合体I类(MHC-I)编码基因 (H2-K1和H2-D1) 或所有MHC-I分子的 专性亚基B2m 时,这种反应性丧失。 这表明αβILTCKtcr与它们的CD8+T细胞一样,主要局限于经典的MHC-I。

为了测试αβILTCKTCR是否识别MHC-I分子,而不管肽序列,我们使用PyMT肿瘤来源的癌细胞系缺乏内质网肽转运体TAP1,因此具有几乎无法检测到的表面MHC-I水平(扩展数据图4f)。Siinfekl肽稳定的MHC-I表达不足以激活αβILTCKTCRs(扩展数据图4g,h), 表明这些TCRs识别特定的肽-MHC-I复合物,而不是MHC-I分子本身。

3. ILTCKs are agonistically selected

为了研究传统的CD8+T细胞是否会产生NK1.1+αβILTCKs,我们在CD8+T细胞中将内源性重排的TCR替换为αβILTCK衍生的TCR(扩展数据图5a-e)。在过继转移到携带肿瘤的受体小鼠中(图2d)后,表达αβILTCK衍生TCR的CD8+T细胞显示PD-1表达上调,而NK1.1表达不上调(图2e,f,扩展数据图5f)。此外,传统的CD8+T细胞反应需要BATF3-和irf8依赖的传统1型树突状细胞(cDC1s)启动,而肿瘤内NK1.1+αβILTCK反应独立于cDC1s(扩展数据图6)。 这些发现表明,αβILTCKs独立于次级淋巴器官中树突状细胞介导的启动,并具有与传统CD8+T细胞不同的本体论。事实上,在肿瘤中,表达αβILTCK衍生TCRs的胸腺细胞发育中,持续且特异性地产生NK1.1+αβILTCKs,而不是PD-1+T细胞 (图2g-i,扩展数据图7a-c)。因此,NK1.1+αβILTCK和PD-1+T细胞代表了两种相互排斥的细胞命运选择,在胸腺细胞发育过程中,任何一种细胞系都可能以tcr特异性依赖的方式发生。

而具有多克隆TCR库的胸腺细胞主要产生常规的CD4或CD8单阳性T细胞(图3a,b),而含有单克隆αβILTCKTCR的胸腺细胞 只产生CD4-/loCD8-/lo细胞 (图3a,b,扩展数据图7d,e)。到目前为止,所有已知的TCRαβ+T细胞在发育过程中都在胸腺中经历了CD4+CD8+双阳性阶段。与预期的一样,肿瘤驻留的NK1.1+αβILTCKs和PD-1+T细胞,而不是CD19+B细胞,被Rorc-cre等位基因一致定位,该等位基因在CD4+CD8+胸腺细胞中瞬时活跃(扩展数据图7f,g)。然而,与其他先天T细胞,如不变的自然杀手T(iNKT)细胞,由高表达的转录因子Zbtb,NK1.1+ αβILTCKs 没有命运映射Zbtb16-cre-Rosa26LSL-YFP等位基因(扩展数据图7h,我),可能由于缺乏经典的MHC-I表达CD4+CD8+胸腺细胞。

经阳性选择后,CD4+CD8+胸腺细胞瞬时表达低水平的PD-1。相比之下,表达αβILTCK-TCR的胸腺细胞保持了较高的PD-1表达(扩展数据图7j,k),表明其有强烈的TCR刺激的历史。事实上,33个αβILTCK衍生的TCR中有23个(69.7%)对胸腺上皮细胞皮系表现出大量的反应性,其水平超过OT-ITCR,驱动了传统CD8+T细胞的阳性选择(扩展数据图7l,数据未显示)。这些发现表明, 强烈的自身反应性驱动αβILTCK谱系承诺,类似于指定iNKT细胞和肠道上皮内淋巴细胞(IEL)命运的“激动剂”选择过程。

为了区分造血间质和耐辐射基质间在介导αβILTCK选择中的作用,我们以野生型或B2m-/-小鼠为受体,生成了TCR-“逆转录”小鼠。B2m-/-受体的胸腺αβILTCK祖细胞室未改变(扩展数据图7m),但仅在造血室B2m消融轻度减少,B2m消融显著减少(扩展数据图7n)。因此,αβILTCKs的激动剂选择信号由辐射敏感的造血和抗辐射的间质室冗余提供。

4. ILTCKs continually repopulate tumours

不断地再生肿瘤

大量携带αβILTCK-tcr的胸腺细胞共同表达PD-1和CD122(扩展数据图7j,k),这一表型让人联想到IEL承诺的胸腺祖细胞。事实上,表达αβILTCK肿瘤tcr的胸腺细胞除了瘤内αβILTCKs外,还分化为小肠IELs,两个群体都表达CD8αα同型二聚体(扩展数据图8a-c)。在过继转移到淋巴细胞减少的肿瘤小鼠,多克隆TCRβ+CD4-/loCD8-/loPD-1+CD122+胸腺祖细胞既产生瘤内αβILTCKs,也产生肠道IELs(图3c,d,扩展数据图8d,e)。然而,在淋巴细胞丰富的小鼠中,αβILTCK和IEL祖细胞移植到肿瘤中,而不是在小肠中(图3c,d)。为了进一步探索肿瘤内αβILTCK和肠道IEL再生的动态,我们使用了Fgd5-creER-Rosa26LSL-tdTomato等位基因,其中他莫昔芬脉冲标记了部分造血干细胞26,能够稳定跟踪其后代(扩展数据图8f)。在Lin?-KIT+SCA1+骨髓干细胞中,有20%的标记效率,大约3%的胸腺αβILTCK/IEL祖细胞被命运定位,类似于成年小鼠的CD4+CD8+、CD4或CD8单阳性和iNKT细胞室(扩展数据图8g-i)。相比之下,小肠CD8αα+IELs的标记能力可以忽略不计(扩展数据图8k,l),证实了早期播种和原位增殖是其种群维持的主要手段27。因此,肿瘤内αβILTCK室,而不是肠道IEL室,不断由胸腺祖细胞补充。

5. FCER1G的表达标志着ILTCK谱系

为了深入了解ILTCK谱系的特征,我们将肿瘤浸润性NK1.1+αβILTCKs和PD-1+T细胞与其各自的胸腺祖细胞进行了比较(扩展数据图9a)。在αβILTCK祖细胞中上调但在成熟祖细胞中被抑制的基因在与抗原刺激相关的基因中富集,包括Tox-Pdcd1程序(扩展数据图9b,补充表3),反映了激动剂选择事件。αβILTCK祖细胞中Lat和Cd2的下调可能会抑制TCR信号传导,使成熟的αβILTCKs不容易被耗尽(扩展数据图9c,补充表3)。值得注意的是,编码许多NK受体和信号分子的基因在αβILTCK祖细胞中表达上调(扩展数据图.9d,补充表3),并在成熟的NK1.1+αβILTCKs8中保持高表达。相比之下,与末端效应分化和组织驻留计划相关的途径,包括Gzmc、Itga1和Itgae,可能是通过响应局部肿瘤微环境特异性信号而获得的(扩展数据图9e,补充表3)。

虽然承诺的αβILTCK祖细胞的过继转移持续产生NK1.1+αβILTCKs,但仍有相当一部分是NK1.1?细胞(图3c)。这不太可能是αβILTCK祖细胞之间预先存在的TCR异质性的结果,因为表达单克隆TCR的胸腺细胞也产生了NK1.1?和NK1.1+亚群(图2g-i,扩展数据图7b,c)。与PD-1+T细胞相比,NK1.1-细胞在转录上更类似于NK1.1+αβILTCKs(扩展数据图9f),但它们在胸腺αβILTCK祖细胞中富集的转录本表达更高,包括Pdcd1(补充表4)。与终末效应分化相关的基因,包括Gzmc,在获得NK1.1时共同上调(补充表4)。因此,NK1.1标记激活了αβILTCKs,可能不能识别肿瘤中所有的αβILTCK细胞谱系。

scRNA-seq实验显示,在小鼠的癌症模型中,Fcer1g在转录定义的αβILTCK簇(C3)中存在差异表达(扩展数据图。1,9g,h),并标记了一个在结肠直肠癌患者的肿瘤组织中与小鼠αβILTCKs转录相似的C3亚群(扩展数据图。2i–k, 9i).这些观察结果表明,Fcer1g可能是一个保守的αβILTCK谱系定义标记。事实上,FCER1G蛋白已经上调承诺PD-1hiCD122hi胸腺αβILTCK祖细胞,但不是在CD8单阳性细胞,并继续表达肿瘤浸润NK1.1+αβILTCKs而不是PD-1+T细胞(扩展数据图9j,k),表明FCER1G具体和稳定标记细胞致力于αβILTCK血统。

在CD4?CD8α?TCRβ+CD1d?NK1.1?胸腺细胞中,FCER1G+CD122+群体表达高水平的PD-1,缺乏颗粒酶B(GZMB)表达,表型与CD122和PD-1共同表达的αβILTCK和IEL祖细胞相同(图4a,b)。在肿瘤浸润性T细胞中,FCER1G+CD122+群体仍然是CD4?,其中大多数上调CD8αα同型二聚体(扩展数据图9l,m),并且一致缺乏PD-1的表达(图4a,b)。值得注意的是,FCER1G+CD122+T细胞中同时含有NK1.1+GZMB+/?αβILTCKs和它们未成熟的NK1.1?GZMB?前体(图4a,b)。因此,FCER1G的表达可以充分识别肿瘤浸润性αβILTCKs,而不管其激活状态如何。

在结肠癌患者中,FCER1G+TCRβ+细胞也很容易在肿瘤组织中检测到(扩展数据图9n),其共受体表达谱与小鼠相似(扩展数据图9n,o)。FCER1G+T细胞相对于邻近的正常结肠在肿瘤组织中富集(图4c,d),与PD-1+相比,它们表达了更高水平的GZMB(图4e)。总的来说,这些发现确定了FCER1G作为αβILTCK谱系定义标记,并证明αβILTCK程序在小鼠和人类中代表了一种进化上保守的肿瘤引起的免疫反应。

6.ILTCK可被设计用于癌症治疗

与之前的研究表明NK1.1+αβILTCKs严重依赖于促炎细胞因子IL-15相一致,我们在缺乏Il15的小鼠中观察到FCER1G+CD122+胸腺αβILTCK祖细胞几乎完全缺失(图5a,b)。因为IL-15在两者中都有表达淋巴组织和非淋巴组织,驱动肿瘤内αβILTCKs的扩张和激活的IL-15的确切来源尚不清楚。在造血细胞系中消融Il15并没有损害肿瘤引起的αβILTCK反应(数据未显示)。值得注意的是,与健康的乳腺组织相比,转化的乳腺上皮细胞中IL-15的表达明显增加(图5c)。IL-15在结肠癌患者的肿瘤上皮细胞中也很容易被检测到(扩展数据图10a),而FCER1G+的频率,而不是PD-1+,T细胞与IL-15水平呈正相关(图5d,扩展数据图10a,b)。

为了研究癌细胞表达的IL-15是否调节αβILTCK反应,我们使用了S100a8-cre-Il15fl/flPyMT小鼠,这些小鼠中Il15在转化中缺失,但在健康的乳腺上皮中没有缺失(扩展数据图10c,数据未显示)。S100a8-cre-Il15fl/flPyMT小鼠的胸腺FCER1G+CD122+αβILTCK祖细胞水平相似(图5e,f)。值得注意的是,与对照组相比,S100a8-cre-Il15fl/flPyMT小鼠中肿瘤浸润性αβILTCKs明显减少,而残留的αβILTCKs中NK1.1和GZMB的表达明显减少(图5e,f)。值得注意的是,与野生型对照组相比,S100a8-cre-Il15fl/flPyMT小鼠表现出加速的肿瘤生长(图5g)。这些发现表明,ILTCKs可以感知癌细胞来源的IL-15,用于癌症免疫监测。

值得注意的是,IL-15足以在胸腺αβILTCK祖细胞中诱导NK1.1和GZMB的上调,以及伴随的PD-1的下调(扩展数据图10d)。为了测试异位激活IL-15信号是否在过继转移的αβILTCK祖细胞可以抑制肿瘤的发展,我们从Ubc-creER-Rosa26LSL-Stat5b-CA/+小鼠中纯化胸腺αβILTCK祖细胞,其中他莫昔芬诱导转录因子STAT5B(STAT5B-CA)的表达,主要协调IL-15信号下游的转录程序31(扩展数据图10e)。在过继转移到淋巴细胞缺陷的肿瘤携带PyMT小鼠后,STAT5B-CA的诱导表达导致转移细胞扩增60倍,四周内NK1.1和GZMB均匀上调(扩展数据图10f-i)。重要的是,与对照组αβILTCKs或无细胞转移的小鼠相比,接受STAT5B-ca武装αβILTCKs的小鼠表现出明显的肿瘤生长抑制作用(扩展数据图10j)。

当过继转移到充满淋巴细胞的PyMT宿主时,STAT5B-ca武装的αβILTCK祖细胞很容易定植肿瘤组织,并经历了强大的扩增和效应分化,导致肿瘤生长减少(图5h-j,扩展数据图10k)。相比之下,过继转移的STAT5B-ca武装的胸腺CD8单阳性T细胞没有移植或分化,可能是由于肿瘤反应性克隆的频率较低,并且预期肿瘤生长没有改变(图5h-j)。因此,αβILTCK中的IL-15信号轴可以成为开发癌症治疗方法的一个强大的和可利用的底物。

Discussion

在这项研究中,我们建立了FCER1G+αβILTCK程序,作为一种独特的和进化保守的肿瘤诱导的T细胞反应,并确定癌细胞来源的IL-15是其抗肿瘤作用的必要和充分驱动因素。由于FCER1G为多个NK受体提供了必要的激活基序,其在胸腺αβILTCK祖细胞中的早期表达可能增强其在肿瘤组织中NK受体上调时效应功能的快速获得。虽然FCER1G也特异性地标记了人类肿瘤浸润性αβILTCK样细胞的一个亚群,但在部分循环的人CD8+T细胞中,延长IL-15暴露可以诱导FCER1G32。可以想象,FCER1G的表达在人类αβILTCKs中可能比在小鼠αβILTCKs中更动态地调控。另外,FCER1G可能标记除人类αβILTCK之外的其他谱系,其解决方案需要进一步的研究。尽管广泛表达肿瘤反应性tcr,但il-15激活的αβILTCKs8的细胞毒性是不可必要的。

研究进展 | 当乳腺癌遇上单细胞测序技术(上)

乳腺癌(Breast Cancer)是女性最常见的恶性肿瘤,也是女性癌症死亡的主要原因。乳腺癌是发生在乳腺上皮组织的恶性肿瘤,是一种高度异质性的肿瘤,深入了解其组织内在异质性及其生物学功能的是剖析肿瘤发生机制的重要一步。目前,单细胞测序技术已广泛应用于解析乳腺癌肿瘤异质性、肿瘤微环境、转移侵袭、治疗耐药等方面。本期,将通过展示单细胞测序研究乳腺癌的部分已发表研究成果,从乳腺癌单细胞图谱构建、肿瘤微环境解析及肿瘤多样化异质性探究等层面,帮助各位在单细胞层面理解该疾病的复杂细胞组成及肿瘤异质性~

1.样本选取

26例原发乳腺癌(11例ER+,5例HER2+和10例TNBC)进行sc RNA-seq;6例乳腺癌(2例ER+,4例TNBC)进行空间转录组测序;4例乳腺癌(1例luminal,1例HER2+和2例TNBC)进行CITE-seq。

2.肿瘤亚型

ER+,HER2+和TNBC。

3.研究思路

4.主要结论

本文结合单细胞RNA测序、空间转录组测序构建了迄今最全面乳腺癌单细胞和空间图谱,并开发了一种与sc RNA-seq 兼容的内在亚型分类方法(SCSubtype),揭示了复发性肿瘤细胞异质性。通过 CITE-seq 免疫表型分析提供了高分辨率的免疫特征,并发现与临床结果相关的新 PD-L1/PD-L2+巨噬细胞群。使用单细胞特征,对大型乳腺癌队列进行解卷积分析,并将它们分为九个 “生态型”,不同生态型显示出与肿瘤样本的临床亚型、SCSubtype亚型及细胞类型的多样化关联,且不同生态型之间的预后也存在明显差异。该项研究提供的乳腺癌细胞结构的综合单细胞和空间图谱,有助对肿瘤异质性的认识,促进乳腺癌的个体化治疗进展。

1.样本选取

8例原发性乳腺癌女性患者的肿瘤样本及配对的正常血液、乳腺和淋巴结样本,通过流式细胞荧光分选技术(FACS)分选的CD45+细胞进行sc RNA-seq;3个额外乳腺癌组织(BC9-11)用于sc TCR-seq和5’ sc RNA-seq。

2.肿瘤亚型

包括表达雌激素受体(ER+)的肿瘤、表达孕激素受体(PR+)的肿瘤、表达人表皮生长因子受体2(Her2+)的肿瘤,以及三者都不表达的三阴肿瘤(TNBC)。

3.研究思路

4.主要结论

利用单细胞转录组对乳腺癌组织中免疫细胞的异质性进行了广泛表征,发现了各种免疫细胞类型,包括单核细胞、巨噬细胞、肥大细胞、 T 细胞、 B 细胞、树突状细胞和嗜中性粒细胞。通过亚群细分,共鉴定出83个不同的免疫细胞簇,包括38个T细胞簇、27个骨髓谱系细胞簇、9个B细胞簇和9个自然杀伤细胞簇。相对于正常乳腺组织,仅在肿瘤中出现的细胞簇包含14个髓细胞簇和17个T细胞簇(比正常组织观察到的细胞簇数增加约一倍)。通过T细胞分化轨迹研究发现T 细胞状态发生了连续性变化,颠覆了之前较少分化或激活离散状态形成的肿瘤微环境经典概念。该研究中sc RNA-seq和sc TCR-seq数据集的综合分析,将有助于更好地理解免疫细胞促进和抑制肿瘤进展潜在的功能机制。

1.样本选取

正常乳腺、癌前 BRCA1 +/–组织、主要乳腺癌亚型( TNBC、ER+、HER2+、男性乳腺癌)、成对肿瘤和受累淋巴结(LN),共55例患者的69个不同的手术组织样本。

2.肿瘤亚型

ER+,HER2+和TNBC。

3.研究思路

4.主要结论

该研究提供了迄今为止关于人类乳腺组织的最全面的单细胞RNA图谱,提供了科学家们理解其中所包含的不同细胞类型的框架。此外,根据不同分组研究了多层面分组的生物学问题:如发现绝经前到绝经后的转变与显著的间质改变有关,成纤维细胞中的PDGFRb和基质相关基因减少;癌前病变到肿瘤的进展与 BRCA1 突变携带者中免疫浸润的增加有关;在不同的乳腺癌亚型中,肿瘤的上皮细胞显示出类似的多样性;组织常驻记忆T细胞(TRM)在TNBC和HER2+中明显,但在ER+肿瘤中不明显;TNBC包括最大的CD8+细胞群,而ER+肿瘤CD8+T细胞减少,提示不同的免疫调节模式;与TNBC和HER2+肿瘤相比,ER+肿瘤具有活跃的循环肿瘤相关巨噬细胞(TAM);在ER+肿瘤患者中,克隆选择和大量迁移都是淋巴结转移的原因等。本文研究结果对于理解乳腺癌的产生机制,以及对于理解周围环境中的细胞如何促进乳腺癌进展、扩散和对治疗的反应具有非常重要的意义。

针对肿瘤组织等异质性高的样本,传统的高通量测序技术仅能提供样本中所有细胞转录水平的平均值,而单细胞转录组突破了传统Bulk测序技术的限制,实现了在单个细胞层面解析其基因表达状态和功能的研究目的,特别适用于解析多种细胞组成、研究复杂细胞功能、追溯细胞发育和探究细胞间相互作用等研究。上述文章采用单细胞测序技术,解析了高度异质性乳腺癌的复杂细胞组成,并深入探究了肿瘤微环境和不同组织学意义的异质性,从而解决了肿瘤异质性的难题,为进一步阐明肿瘤的起源发生、转移播散、治疗耐药等问题奠定了基础。

参考文献

1. Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers[J]. Nature Genetics , 2021, 53(9):1334-1347.

2. Azizi E, Carr AJ, Plitas G, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment[J]. Cell , 2018, 174(5):1293-1308.

3. Pal B, Chen Y, Vaillant F, et al. A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast[J].? The EMBO Journal , 2021, 40(11):e107333.

科学家发现免疫检查点抑制剂PD-1/PD-L1 能诱导巨噬细胞吞噬癌症

双肺多颗肿瘤 不可逆标靶三周内肿瘤缩小一半美国科学家研发出一种新型液态活检技术 癌症检出率较现今高出一倍肺癌治疗贵不一定有效 应全面性考量对症下药不可逆标靶药物 助晚期肺癌一线击出抑制肿瘤安打 以PD-1/PD-L1抗体为代表的免疫检查点抑制剂被证明能够以另一种方式来对抗癌症,那就是利用巨噬细胞吞噬癌细胞。刊登于《自然》中的一篇论文表示,以PD-1/PD-L1抗体为代表的免疫检查点抑制剂,已经证实可以调动T细胞莱对抗癌症,除此之外,由史丹佛大学生物学教授Irving Weis *** an博士带领的团队发现,这些抗体还可以利用肿瘤相关巨噬细胞(tumour-associated macrophages,TAMs),促使它们「吞噬」癌症

肿瘤相关巨噬细胞是肿瘤微环境中最多的免疫细胞。肿瘤发展初始,这些细胞会负责清除肿瘤细胞,但随着时间,巨噬细胞又会变成癌细胞扩散、转移的主要助力。

约十年前,研究人员发县,T细胞会负责搜索及清理受损或病变的癌细胞,但有时会不小心攻击健康细胞,并且引发自体免疫疾病,像是红斑狼疮或者多发性硬化症。而PD-1是一种表达于T细胞表面的免疫检查点分子,通过抑制T细胞响应而保护机体免于过度活跃的免疫系统。研究人员发现肿瘤细胞会利用基于PD-1/ PD-L1的免疫保护措施来为自己牟利。肿瘤细胞会表达PD-L1蛋白,通过PD-L1蛋白的受体结合来抑制T细胞的侵袭。

Weis *** an及其同事发现,PD-1也会抑制巨噬细胞的抗癌活性。文章的主要作者Sydney R. Gordon表示,「渗透肿瘤的巨噬细胞会诱导后者在其表面产生PD-1受体,当PD-1或PD-L1被抗体阻断时,这些巨噬细胞就会对肿瘤细胞进行攻击。」

研究人员尚未阐明PD-1和PD-L1阻断释放活巨噬细胞的具体方式,但这仍然带来无限前景的研究成果,因为该研究也证明了PD-1或PD-L1阻断剂可能比以前人们所认为的更具有广泛的肿瘤杀伤能力。

本文地址:http://dadaojiayuan.com/jiankang/295444.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章