登录
首页 >> 健康生活

首个高选择性、低极性磷酸酶抑制剂(脱落酸详细资料大全)

妙手生春 2024-05-04 21:38:10

首个高选择性、低极性磷酸酶抑制剂

2016年07月14日讯 这周诺华同时在《自然》和《药物化学杂志》发表了他们SHP2抑制剂工作。SHP2是个非常重要的磷酸酶,在很多生物过程中起关键作用,其中包括肿瘤生长和PD-1信号通路。这个被称作蛋白胶水的化合物是SHP2的别构抑制剂,即通过把SHP2固定在一个非活性构象而抑制其功能。这个化合物活性不错(70 nM)、选择性非常高、并且显示细胞和体内活性,是磷酸酶抑制剂研究的重要进展。

磷酸酶是和激酶一样重要的调控蛋白,和激酶功能正好相反,所以可以被看作内源性激酶抑制剂。磷酸酶抑制剂开发的最主要障碍是选择性和过膜性。磷酸酶的底物是磷酸化蛋白,其活性口袋主要和磷酸结合,所以高活性配体都极性非常大,选择性也很差。而极性太大则无法通过细胞膜到达靶标所在地。选择性差则很难准确研究磷酸酶的生物功能。最著名的磷酸酶当属糖尿病靶点PTP1B,当年有这个项目的公司比现在有PD-1的公司还多,其中包括诺华,

但是别构抑制剂理论上没有这两个问题,诺华的这个化合物也在实验上证实了这一点。很多激酶和磷酸酶本身处于非活性状态(通常是蛋白分子的调控域与催化域相互结合阻止底物与催化域的结合),需要一定信号改变构象而激活。把蛋白凝固在非活性状态、即媒体宣传的蛋白胶水、并非新概念,第一个激酶抑制剂药物格力卫就是和ABL的非活性构象结合。但是对磷酸酶来说这确实是第一个。

他们的筛选方法比较有趣。作者用一个已知能激活SHP2的多肽把SHP2激活一半,留一半未活化酶,以保持一个容易被打破的动态平衡,增加找到较弱先导物的机会。然后作者用整个蛋白和催化结构域分别筛选一个比较小的化合物库,这样可以只选择别构抑制剂。如果化合物同时抑制整个蛋白和催化域片段则说明是通过与活性口袋结合抑制,但根据以往经验这种抑制剂不多,作者也没报道有多少。作者找到一个12uM的苗头化合物,通过简单优化找到这个有体内活性的先导物。作者通过在细胞中表达失去别构结合能力但依然有催化功能的SHP2令人信服地显示这个化合物的确是通过SHP2起的作用。晶体结构也证明了结合机理。

这个工作的主要亮点是筛选模式,他们只筛选了10万化合物就找到一个不错的先导物。这个先导物可能活性并不突出,但过膜性和选择性远优于以前的磷酸酶抑制剂。如果其它磷酸酶也用这个方式筛选数以亿计的DNA encoded化合物库应该会发现很多性质类似的磷酸酶抑制剂。希望这个工作会重新激发制药界对磷酸酶的兴趣。如果高活性、高选择性、过膜性磷酸酶抑制剂可以较容易发现,磷酸酶或许会成为下一类热门靶点。

脱落酸详细资料大全


脱落酸(abscisic acid,ABA)别名:脱落素(Abscisin),休眠素(Dormin)。一种抑制生长的植物激素,因能促使叶子脱落而得名。可能广泛分布于高等植物。除促使叶子脱落外尚有其他作用,如使芽进入休眠状态、促使马铃薯形成块茎等。对细胞的延长也有抑制作用。1965年证实,脱落素II和休眠素为同一种物质,统一命名为脱落酸。

基本介绍 中文名 :脱落酸 英文名 :Abscisic Acid(ABA) 别称 :脱落素、休眠素 化学式 :C15H20O4 分子量 :264.32 CAS登录号 :21293-29-8 EINECS登录号 :244-319-5 熔点 :163℃ 沸点 :458.7℃ 水溶性 :3-5g/L 密度 :1.193 g/mL 外观 :白色粉末 套用 :农业 基本信息,编号系统,分子结构数据,计算化学数据,性质与稳定性,危险性信息,介绍,定义,发现,性质,作用,代谢,生物合成,作用机理,信号网路机制,套用,价值,S-诱抗素,市场分析, 基本信息 中文名称:脱落酸 中文别名:(+)-脱落酸;(S)-5-(1-羟基-4-氧代-2,6,6-三甲基-2-环己烯-1-基)-3-甲基-(2Z,4E)-戊二烯酸; ABA,休眠素; 英文名称:(+)-abscisic acid 英文别名:2,4-Pentadienoic acid, 5-(1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-3-methyl-, [S-(Z,E)]-; CAS号:21293-29-8 分子式:C 15 H 20 O 4 分子量:264.31700 精确质量:264.13600 PSA:74.60000 LogP:2.24990 编号系统 CAS号:21293-29-8 MDL号:MFCD00066545 EINECS号:244-319-5 RTECS号:RZ2475100 BRN号:2130328 PubChem号:24890921 分子结构数据 1、 摩尔折射率:74.03 2、 摩尔体积(cm 3 /mol):221.5 3、 等张比容(90.2K):593.6 4、 表面张力(dyne/cm):51.5 5、 极化率(10 -24 cm 3 ):29.34 计算化学数据 1、疏水参数计算参考值(XlogP):1.6 2、氢键供体数量:2 3、氢键受体数量:4 4、可旋转化学键数量:3 5、互变异构体数量:5 6、拓扑分子极性表面积(TPSA):74.6 7、重原子数量:19 8、表面电荷:0 9、复杂度:494 10、同位素原子数量:0 11、确定原子立构中心数量:1 12、不确定原子立构中心数量:0 13、确定化学键立构中心数量:2 14、不确定化学键立构中心数量:0 15、共价键单元数量:1 性质与稳定性 1.避免接触强氧化剂,酸,酸性氯化物,酸酸酐,二氧化碳。 2.对光敏感,属强光分解化合物。 3. 存在于菸叶中。 危险性信息 紧急情况概述:造成皮肤刺激。造成严重眼刺激。可引起呼吸道刺激。 GHS危险性类别: 皮肤腐蚀 / 刺激 类别 2 严重眼损伤 / 眼刺激 类别 2 特异性靶器官毒性 一次接触 类别 3 警示词:警告 危险性说明: H315 造成皮肤刺激。 H319 造成严重眼刺激。 H335 可引起呼吸道刺激。 预防措施: P264 作业后彻底清洗。 P280 戴防护手套/穿防护服/戴防 护眼罩/戴防护面具。 P261 避免吸入粉尘/烟/气体/烟雾/蒸气/喷雾。 P271 只能在室外或通风良好处使 用。 事故回响: P302+P352 如皮肤沾染: 用水充分清洗。 P332+P313 如发生皮肤刺激: 求医/就诊。 P362+P364 脱掉沾染的衣服,清洗后方可重新使用。 P305+P351+P338 如进入眼睛: 用水小心冲洗几分钟。如戴隐 形眼镜并可方便地取出,取出 隐形眼镜。继续冲洗。 P337+P313 如仍觉眼刺激: 求医/就诊。 P304+P340 如误吸入: 将人转移到空气新鲜处,保持 呼吸舒适体位。 P312 如感觉不适,呼叫解毒中心/医生 安全储存: P403+P233 存放在通风良好的地方。保 持容器密闭。 P405 存放处须加锁。 废弃处置:P501 按当地法规处置内装物/容器。 健康危害:造成皮肤刺激。造成严重眼刺激。可引起呼吸道刺激。 介绍 脱落酸指能引起芽休眠、叶子脱落和抑制细胞生长等生理作用的植物激素。 一种抑制生长的植物激素,因能促使叶子脱落而得名。可能广泛分布于高等植物。除促使叶子脱落外尚有其他作用,如使芽进入休眠状态、促使马铃薯形成块茎等。对细胞的延长也有抑制作用。 植物激素脱落酸(aba ) 脱落酸(Abscisic Acid,缩写为ABA)是植物五大天然生长调节剂之一。当前已经实现了灰葡萄孢霉菌工业发酵生产天然脱落酸,而且纯度较高,生物活性较高,未来将大规模套用于农业生产。 脱落酸可由氧化作用和结合作用被代谢。脱落酸可以刺激乙烯的产生,催促果实成熟,它抑制脱氧核糖核酸和蛋白质的合成。 北京奥运会期间,北京全市的百万盆鲜花,均有施加脱落酸,以保证花盛开的状态。 定义 脱落酸是一种具有倍半萜结构的植物激素。1963年美国艾迪科特等从棉铃中提纯了一种物质能显著促进棉苗外植体叶柄脱落,称为脱落素II。英国韦尔林等也从短日照条件下的槭树叶片提纯一种物质,能控制落叶树木的休眠,称为休眠素。1965年证实,脱落素II和休眠素为同一种物质,统一命名为脱落酸。 发现 1961年W.C.刘和H.R.卡恩斯从成熟棉铃里分离出一种能使外植体切除叶片后的叶柄脱落加速的物质结晶,称为“脱落素Ⅰ”,但未鉴定其化学结构。 1963年大熊和彦和F.T.阿迪科特等从棉花幼铃中分离出另一种加速脱落的物质结晶,叫做脱落素Ⅱ。同年C.F.伊格斯和P.F.韦尔林用色谱分析法从欧亚槭叶子里分离出一种抑制物质,能使生长中的幼苗和芽休眠,他们命名为休眠素。 1965年韦尔林等比较研究休眠素和脱落素Ⅱ的化学性质后,证明两者是同一物质,分子式与大熊和彦等1965年提出的一致。统一命名为脱落酸。它在植物中普遍存在。 性质 脱落酸是一个15碳的倍半萜烯化合物。天然存在的脱落酸是一个对映结构体,特别是右旋化合物(S)-ABA。(R)-ABA的生理活性在多数情况下与(S)-ABA相同。其生理活性取决于以下条件:①有自由羧基,②环己烷环上在 α-或β-位置有双键,③C-2处的双键是顺式。2-反式ABA在光中异构化后才有活性。酯类化合物在酯链水解后产生的自由酸也有活性。 天然脱落酸为白色结晶粉末,易溶于甲醇、乙醇、丙酮、氯仿、乙酸乙酯与三氯甲烷等,难溶于醚、苯等,水溶解度3-5 g/L(20℃)。脱落酸的稳定性较好,常温下放置两年,有效成分含量基本不变,但应在干燥、阴凉、避光处密封保存。脱落酸水溶液对光敏感,属强光分解化合物。 张大鹏发现植物的脱落酸受体 天然脱落酸与生长素、乙烯、赤霉素、细胞分裂素并列为植物五大激素,它可以提高植物的抗旱和耐盐力,对开发利用中低产田以及植树造林、绿化沙漠等有极高的价值。ABA还是抑制种子萌发的有效抑制剂,因此可以用于种子贮藏,保证种子、果实的贮藏质量。此外,ABA还能引起叶片气孔的迅速关闭,可用于花的保鲜、调节花期、促进生根等,在花卉园艺上有较大的套用价值。对ABA及其应答基因的研究可揭示植物抗逆生理反应的分子过程,从而为定向增强作物对环境的适应力奠定基础。 脱落酸在农业生产上有广阔套用前景,能产生巨大的经济效益和社会效益。因为存在于植物体内的天然脱落酸光学构型仅为(+)-cis,trans-ABA,传统的化学合成法生产成本极高,所以目前只有日本、美国等已开发国家套用于大规模农业生产。 作用 促进脱落 从脱落酸的名称可知、加速植物器官脱落是ABA的一个重要生理作用。 关于ABA引起叶、花和果实的脱落问题,存在不同的看法。Addicott(1982)作为ABA的发现者之一,根据大量事实认为内源ABA促进脱落的效应是肯定的。但用ABA作为脱叶剂的田间试验尚未成功。这可能是由于叶片中的IAA,GA和CTK对ABA有抵消作用。 促进落叶物质的检定法 Milborrow(1984)认为外源的ABA能引起脱落,但比外源乙烯的作用低。 Osborne(1989)在评述乙烯和ABA对脱落的作用时得出结论,ABA在脱落方面可能没有直接的作用,而只是引起器官细胞过早衰老,随后刺激乙烯产量的上升而引起脱落,真正的脱落过程的引发剂是乙烯而不是ABA。 ABA的生物试法,一般采用豆叶(或棉叶)脱落法,将被试物质的羊毛脂膏涂在对生叶柄残端,观察其脱落的速度。此外,还用燕麦或小麦胚芽鞘切段伸长抑制的方法。 抑制生长 ABA是一种较强的生长抑制剂,可抑制整株植物或离体器官的生长。ABA对生长的作用与IAA,GA和CTK相反,它对细胞的分裂与伸长起抑制作用。它抑制胚芽鞘、嫩枝、根和胚轴等器官的伸长生长。 促进休眠 在秋季短日下,许多木本植物叶子ABA含量增多,促进芽进入休眠。将ABA施到这些木本植物生长旺盛的小枝上,会引起芽休眠。马铃薯的休眠芽中也含有较多ABA。因此,可用ABA处理马铃薯,以延长其休眠期。 红松、桃、板栗、槭树等休眠种子,含有较多的ABA。经低温层积处理几个月后,种子中ABA含量下降,发芽率显著上升。但ABA含量的高低,不一定是种子休眠的直接原因。红松种子外皮的ABA含量高。经水洗后ABA含量明显下降,但发芽率仍很低。进一步分析云南松、油松、华山松、白皮松种子的ABA含量,发现一些松树种子的ABA含量也较高,但不表现休眠。例如,非休眠的华山松种子ABA含量比休眠的红松种子ABA含量高约10倍。 莴苣、萝卜等种子的萌发,也受到ABA的抑制。 引起气孔关闭 调节气孔开度。ABA调控气孔关闭的信号转导途径有两条:促进气孔关闭和抑制气孔张开。在缺水条件下,植物叶子中ABA的含量增多,引起气孔关闭。这是由于ABA促进钾离子、氯离子和苹果酸离子等外流,就促进气孔关闭。用ABA水溶液喷施植物叶子,可使气孔关闭,降低蒸腾速率。因此,ABA可作为抗蒸腾剂。另外,ABA抑制钾离子和质子泵的作用,就抑制气孔张开。 ABA促进气孔的关闭 调节种子胚的发育 近年来注意到,在种子胚发育期间,内源ABA作为正的调节因子起着重要的作用。内源ABA可使胚正常发育成熟以及抑制过早萌发。在未成熟胚培养中,外源ABA能引起加速某些特别贮藏蛋白质的形成;如缺乏ABA,这些胚或者不能合成这些蛋白质,或者形成很少。这说明,种子发育早、中期的ABA水平控制着贮藏蛋白质的积累。ABA是否也控制着发育中的胚的淀粉和脂肪的积累,是一个待研究的问题。 此外,ABA还可作为植物防御盐害、热害、寒害的物质,这可能与它能促使植物生成新的胁迫蛋白有关。ABA还可促进一些果树(如苹果)的花芽分化,以及促使一些短日植物(如黑醋栗)在长日条件下开花。 增加抗逆性 一般来说,干旱、寒冷、高温、盐渍和水涝等逆境都能使植物体内ABA迅速增加,同时抗逆性增强。如ABA可显著降低高温对叶绿体超微结构的破坏,增加叶绿体的热稳定性;ABA可诱导某些酶的重新合成而增加植物的抗冷性、抗涝性和抗盐性。因此,ABA被称为应激激素或胁迫激素(stress hormone)。 影响性分化 赤霉素能使大麻的雌株形成雄花,此效应可被脱落酸逆转,但脱落酸不能使雄株形成雌花。 代谢 脱落酸的合成部位主要是根冠和萎蔫的叶片,茎、种子、花和果等器官也有合成脱落酸的能力。例如,在菠菜叶肉细胞的细胞质中能合成脱落酸,然后将其运送到细胞各处。脱落酸是弱酸,而叶绿体的基质呈高pH,所以脱落酸以离子化状态大量积累在叶绿体中。 葡萄的脱落酸含量 ABA的钝化 ABA可与细胞内的单糖或胺基酸以共价键结合而失去活性。结合态的ABA可水解重新释放出ABA。因而结合态ABA是ABA的贮藏形式。但干旱所造成的ABA迅速增加并不是来自于结合态ABA的水解,而是重新合成的。 ABA的氧化 ABA的氧化产物是红花菜豆酸(phaseic acid)和二氢红花菜豆酸(dihydrophasei acid)。红花菜豆酸的活性极低,而二氢红花菜豆酸无生理活性。 生物合成 脱落酸生物合成的途径主要有两条: 类萜途径(Terpenoid pathway) 该途径中脱落酸的合成是由甲瓦龙酸(MVA)经过异戊烯酸焦磷酸(IPP),合成法呢基焦磷酸(Farnesyl pyrophosphate,FPP),再经过一些未明的过程而形成脱落酸。此途径亦称为C15直接途径。MVA→→FPP→→ABA 。 类胡萝卜素途径(Carotenoid pathway) 该途径下脱落酸的前体异戊烯酸焦磷酸(IPP)及二甲基丙烯焦磷酸(DMAPP)并非通过MVA途径合成,而是通过2-C-甲基-D-赤藻糖醇-4-磷酸途径(MEP/DOXP pathway)合成,并经过牻牛儿基焦磷酸(C10,Geranyl pyrophosphate,GPP),法呢基焦磷酸(C15,Farnesyl pyrophosphate,FPP),牻牛儿基牻牛儿基焦磷酸(C20,Geranylgeranyl pyrophosphate,GGPP),直至合成全反式类胡萝卜素(all-trans-beta-Carotene)。 脱落酸的碳骨架与一些类胡萝卜素的末端部分相似。塔勒(Tarlor)等将类胡萝卜素曝露在光下,会产生生长抑制物。后来发现紫黄质(violaxanthin)在光下产生的抑制剂是2-顺式 黄质醛(xanthoxin),在一些植物的枝叶中也检出这种物质。黄质醛迅速代谢成为脱落酸。近几年发现,除了紫黄质外,其他类胡萝卜素(如新黄质neoxanthix,叶黄素lutein等)都可光解或在脂氧合酶(lipoxygenase)作用下,转变为黄质醛,最终形成脱落酸。由类胡萝卜素氧化分解生成ABA的途径称为ABA合成的间接途径。 脱落酸的生物合成 通常认为在高等植物中,主要以间接途径合成ABA。直接途径是指从C15化合物(FPP)直接合成ABA的过程。间接途径则是指从C40化合物经氧化分解生成ABA 的过程。(Suzuki Masaharu,1998) 作用机理 脱落酸的生理作用主要是导致休眠及促进脱落。用脱落酸处理植物生长旺盛的小枝,可以引起与休眠相同的状态;产生芽鳞状的叶子代替展开的营养叶;减少顶端分生组织的有丝分裂活动;并能引起下面的叶子脱落和防止休眠的解除。用脱落酸处理能萌发的种子,可以使之休眠。这种对萌发的抑制作用可以用赤霉素或细胞分裂素处理来抵消或逆转。脱落酸能拮抗赤霉素的代替长日照导致长日植物抽苔开花的作用。它还能使少数短日植物在非诱导周期的条件下开花。反之,脱落酸的几种作用也可用赤霉素抵消。例如使用赤霉素就能克服脱落酸对遗传性高秆玉米的伸长和对种子萌发及马铃薯发芽的抑制作用。此外,脱落酸的作用也与细胞分裂素相反,脱落酸在植物体内既有拮抗赤霉素的作用,也有拮抗细胞分裂素的作用。但是这些拮抗作用非常复杂。例如莴苣种子萌发需要光,赤霉素可以代替光。而脱落酸可以抵消赤霉素的促进萌发的作用,但继续提高赤霉素的浓度却不能克服脱落酸的作用、恢复对萌发的促进。 ABA作用机理的详细图解 脱落酸在控制核酸和蛋白质合成中起作用。脱落酸抑制大麦粒中 α-淀粉酶的合成,并在这一过程中与赤霉素发生拮抗。对酶合成的抑制作用与 RNA合成的抑制剂8-氮鸟嘌呤和6-甲嘌呤所产生的作用类似,表明脱落酸的作用可能是抑制对决定 α-淀粉酶结构的 RNA的合成,或者阻止 RNA结合到有活性的酶单位中去。在蒲公英的叶子中脱落酸抑制RNA的合成,而在品藻中则抑制DNA的合成。 脱落酸由于价格昂贵,在农业生产上套用的实验还极少。 信号网路机制 研究人员发现了ABA信号网路中一个关键的亚家族:PP2Cs的最新结构分析结果,从而揭示了这一信号通路的新机制。研究人员报导了一个SnRK2–PP2C复合物结构,从中发现SnRK2,与ABA受体对PP2C识别中的惊人相似性。SnRK2(蔗糖非酵解型蛋白激酶,sucrose non-fermenting1-related protein kinase)是广泛存在于植物中的一类Ser/Thr类蛋白激酶,参与植物体内多种信号途径的转导,在植物的抗逆境生理过程中扮演了重要角色。 这一复合物中,激酶活性基团结合在PP2C的活性位点上,而保守的ABA结合位点感测色氨酸则是插入到激酶催化口处,因此模拟了受体-PP2C相互作用。这些结构生物学的研究结果提出了一个简单的新机制,即耦合的ABA能直接结合到SnRK2激酶活性位点上;这也揭示了一个激酶-激酶磷酸酶调控新法则,根据这一法则,激酶-激酶磷酸酶调控是通过他们催化位点的相互包裹。 套用 脱落酸在农业生产上有广阔的套用前景,能产生巨大的经济效益和社会效益。归纳起来,主要有以下几个方面: (1)脱落酸是种子萌发的有效抑制剂,在很多植物的休眠种子中它作为一种主要的生长抑制剂而存在,很多植物的种子都可用脱落酸浸泡而防止发芽,而且其的作用是可逆的,它很容易从已处理过的种子中被淋洗出去,再次恢复生长,因此可用脱落酸抑制种子发芽,用于种子储藏。 (2)脱落酸可以促进种子、果实的贮藏物质,特别是贮藏蛋白和糖份的积累。在种子和果实发育早期外施脱落酸,可达到提高粮食作物和果树产量的目的。 (3)脱落酸能够增强植物抗寒抗冻的能力,可套用于帮助作物抵抗早春期间的低温冷害以及培育新的抗寒力强的作物品种。如在北京进行的小田实验,对新冬2号冬小麦用10~6 M进行浸种处理24小时,在第一年10月26日播种在试验地,当麦苗刚出土时就进入寒冬,第二年返青时,对照的存活率为51.4%,而脱落酸浸种处理的达到96.3%。脱落酸提高小麦抗寒性的作用有两个特点:一是在不抑制生长的情况下,可提高抗寒性;二是能在温暖的条件下,诱发抗寒性的提高。通常植物的抗寒性只有在低温下锻炼才能得到发展,脱落酸的这些作用特点,不仅对探讨抗寒基因的表达与调控具有重要意义,而且有可能为防止越冬作物的倒春寒冻害带来希望。 冬天里的“冰糖葫芦” (4)脱落酸可以提高植物的抗旱力和耐盐力,对于帮助人类抵抗越来越多的干旱环境,开发利用中低产田以及植树造林等有极高的套用价值。 (5)给小麦等施以外源脱落酸能抑制杆伸长,并增加穗重,可抗作物倒伏;低浓度脱落酸能促进不定根的形成与再分化,在组织培养中有广阔套用前景。 脱落酸是植物中普遍存在的天然物质,人类所食用的水果、蔬菜、粮食中均天然含有,对人类和环境安全。脱落酸原药的生产工艺所采用的原材料均为无毒无害的农副产品,无有害原素或物质加入,其化学结构中也无有毒元素存在。 价值 脱落酸是平衡植物内源激素和有关生长活性物质代谢的关键因子,具有促进植物平衡吸收水、肥和协调体内代谢的能力,可有效调控植物的根/冠和营养生长与生殖生长,对提高农作物的品质、产量具有重要作用。通过施用脱落酸,可减少化学农药的施用量,在提高农产品品质等许多方面有着重要的生理活性作用和套用价值。 除此之外,外源脱落酸能引起叶片气孔的迅速关闭,抑制蒸腾作用,可用于花的保鲜,或在作物幼苗移植栽培的运输过程中防止萎蔫;脱落酸还能控制花芽分化,调节花期,在花卉园艺上有很大的套用价值。 脱落酸属纯天然的植物生长调节剂,脱落酸原药及其复合实用制剂可广泛套用于水稻、蔬菜、花卉、草坪、棉花、中草药、果树等作物,提高作物在低温、干旱、春寒、盐渍、病虫害等不良生长环境中的生长素质及其结实率和品质,提高中低产田的单产产量,减少化学农药用量。 脱落酸可广泛套用于城市草坪、园林等绿化建设,套用于西部地区的节水农业、设施农业,生态植被的恢复重建,对于发展中国农业产业化意义重大。因此,其经济效益、社会效益、环境效益十分显著。 脱落酸实用制剂的套用市场打开后,生产企业所产生的直接经济效益数以亿计;其套用于大棚蔬菜生产,挽回的由于寒害和病虫害所造成的损失,及由于蔬菜品质的提高、农药残留量降低所带来的国内外市场竞争力提高,所形成的间接效益,及为水稻制种业带来的间接经济效益也将数以亿计。 S-诱抗素 脱落酸又叫S-诱抗素:目前全球有两家生产商采用同类微生物和不同的发酵方法工业化生产天然脱落酸,灰葡萄孢霉液态发酵、灰葡萄孢霉连续平板固态发酵。 S-诱抗素:具有新的生理作用被发现.包括诱导抗干旱、抗冷、冻、抗盐碱、促进生根等作用。 植物的"生长平衡因子" S-诱抗素是平衡植物内源激素和有关生长活性物质代谢的关键因子。具有促进植物平衡吸收水、肥和协调体内代谢的能力。可有效调控植物的根/冠和营养生长与生殖生长,对提高农作物的品质、产量具有重要作用。 植物的"抗逆诱导因子" S-诱抗素是启动植物体内抗逆基因表达的"第一信使",可有效激活植物体内抗逆免疫系统。具有培源固本,增强植物综合抗性(抗旱、抗热、抗寒、抗病虫、抗盐碱等)的能力。对农业生产上抗旱节水、减灾保产和生态环境的恢复具有重要作用。 绿色环保产品 S-诱抗素是所有绿色植物均含有的纯天然产物,该品是通过微生物发酵获得的高纯度、高生长活性;对人畜无毒害、无刺激性。是一种新型高效、天然绿色植物生长活性物质。 市场分析 脱落酸应该说是一个市场前景非常好的产品,在农业生产上有广阔的套用前景,能产生巨大的经济效益和社会效益。目前国内和国际脱落酸市场都处于初期,工业化产品2001年后才逐步进入市场,价格相对较高,产品宣传力度不够,生产企业市场开发、拓展能力不强,农业及相关产业用户对脱落酸产品知之甚少,对脱落酸的套用效果没有充分认识,这造成一方面用户对脱落酸产品有非常大的市场需求,另一方面生产企业脱落酸的产能和产量都比较小,产品销售不顺畅。 现在脱落酸国际市场的情况好于国内市场,美国、日本等国家已经对脱落酸这一产品有所认识和了解,开始将脱落酸制剂逐步套用到农业生产中,产品的用量也在一步步增加。而在国内,脱落酸制剂的产业化套用则较少,出现了脱落酸市场在总的发展趋势上应该是供不应求,而目前反到是供大于求的畸形局面。 今后很长的一段时间内,只要能够充分开拓好市场,做好产品的行销,无论是在国内还是国际市场,脱落酸产品都将会长期处于供不应求的局面。

钙调磷酸酶抑制剂治疗狼疮肾炎有效



狼疮性肾炎是系统性红斑狼疮患者常见的肾脏损害,极大地增加了患者的死亡率。目前由于治疗LN,患者缓解率低,副作用大。因此,寻找治疗LN的新方法和新药物一直是LN临床和基础研究的重点。


环孢霉素(CSA)和他克莫司(TAC)属于钙调神经磷酸酶抑制剂(CNIs),多年来一直用于器官移植的抗排斥治疗。近年来有研究表明,CNIs对LN有明显的治疗作用,且优于目前的治疗药物。然而,一些研究表明,CNIs治疗LN有明显的副作用和未知的长期结果。因此,关于中枢神经系统在肾脏LN治疗中的应用仍存在较大分歧。


最新一期《NDT》杂志以专题的形式发表了CNIs对LN治疗的一系列观点,分为支持者、反对者和中立者。本文将与大家分享香港屯门医院ChiChiuMok发表的支持者观点。其他观点后续会和大家分享。


CNIs基础和药理研究


基础研究表明,CSA通过稳定足部细胞骨架蛋白来降低尿蛋白。小鼠研究结果表明,TAC可通过稳定足细胞骨架蛋白和抑制足细胞凋亡来降低尿蛋白。此外,TAC还能抑制肾小球中IFN-的表达,抑制肾小球系膜细胞的增殖和蛋白尿。


最近的研究还表明,多药耐药基因1的产物P-糖蛋白与糖皮质激素耐药有关。CsA和TAC能明显抑制P-糖蛋白的产生。这可能是CNIs治疗激素抵抗型狼疮肾炎的有效机制。


TAC的效果是CsA的10~100倍,高血压、高血脂、牙龈增生、多毛等副作用明显降低。因此,TAC可能是治疗LN的较好选择。


中枢神经系统在增生性狼疮肾炎治疗中的应用


1.诱导疗法


在RCT的一项研究中,40例增生性LN患者随机接受CsA(45mg/kg/d)联合大剂量糖皮质激素或静脉环磷酰胺(CTX,10mg/kg)联合大剂量糖皮质激素共8次。诱导9个月后,两组肾脏缓解率无显著差异。经过7.7年的随访,两组之间的肾损害和ESRD的发生率没有显著差异。


其他小型RCT研究表明,在增生性LN患者中,短期TAC和静脉注射CTX之间没有显著差异。最近的一项荟萃分析包括五项对照研究,分析显示TAC治疗在完全肾缓解和部分肾缓解方面优于CTX治疗。另一项RCT研究比较了TAC和MMF对增生性和膜性LN的治疗效果,结果显示TAC和MMF具有相似的治疗效果。


2.维持治疗


Moroni等比较了CsA(2.5~3.0mg/kg/d)和AZA(2mg/kg/d)在维持治疗中的作用。随访4年,CSA组复发率为19%,AZA组复发率为24%。


膜性狼疮的中枢神经系统治疗


Austin等人纳入了42例经病理证实的膜性LN患者。将患者随机分为三组,每组接受泼尼松(1mg/kg/d)治疗8周,然后逐渐减量;或泼尼松联合CTX(0.5~1g/m2,隔月一次);或泼尼松联合CSA(5mg/kg/d)。治疗12个月后,CsA联合泼尼松组的完全缓解率和部分缓解率最高(83%),其次是CTX联合泼尼松组(60%)和单纯泼尼松组(27%)。但CsA组肾病综合征复发率高于CTX组。


基于TAC的联合疗法


在中国进行的一项大型RCT研究涉及368名LN患者,研究显示低剂量MMF(1g/d)和TAC(4mg/d)的6个月完全缓解率优于静脉注射CTX。同时,其他研究表明该方案对复发性LN也有效。


中枢神经系统在狼疮肾炎治疗中的局限性


目前,尚无TAC治疗LN的长期研究结果。此外,没有关于TAC治疗伴有肾功能损害的LN患者的研究。TAC的治疗窗较窄,需要检测患者的血药浓度。


CNIs有明显的肾毒性、感染、肿瘤等副作用。中枢神经系统的肾毒性包括急性和慢性肾毒性。急性肾毒性与患者的血药浓度有关


目前尚无关于CNIs治疗LN的慢性肾毒性发生率、CNIs的药物剂量与系统性红斑狼疮(SLE)活动度的研究。


越来越多的证据表明,与目前的治疗方案相比,CNIs具有相同或更好的疗效,且无明显的生殖毒性,对糖皮质激素和CTX治疗无效的患者有效。


这是TAC诱导治疗重症LN的另一种选择。可以考虑用TAC治疗非CTX。TAC可用于治疗想要保留生育能力的年轻患者。

我得了抑郁症3个月了,医生配给我吃的百忧解,可是病情一直反复,还没好,有什么好的办法吗?

抑郁症表现轻重不一,症状千姿百态,常用的治疗方法有:
(一)药物治疗:应根据不同的症状选用不同的药物。
1、对伴有焦虑和激越的抑郁症病人应使用阿米替林,每日剂量150~300mg,分2~3次;
2、对表现迟滞、违拗的抑郁症病人应选用丙咪嗪,剂量同阿米替林;
3、对伴有焦虑和明显睡眠障碍的抑郁症病人选用多虑平,剂量同阿米替林;
4、对伴有强迫和惊恐障碍的抑郁症病人选用氯丙咪嗪,剂量为每日100~200mg,分2~3次服用;
5、对伴有焦虑和众多体诉的抑郁症病人选用三甲丙咪嗪,剂量同阿米替林;
6、对伴有焦虑和睡眠障碍的老年抑郁症病人选用马普替林,剂量同阿米替林;
7、对伴有迟滞和退缩的抑郁症病人选用帕罗西汀,剂量为每天上午20~60mg;
8、对伴有强迫和恐惧的老年抑郁症病人选用氟西丁,剂量为每日上午20~60mg;
9、对内因性或药源性抑郁症病人可选用单胺氧化酶抑制剂,剂量为每日50~100mg,分2~3次服用;
10、对伴有幻觉、妄想等分裂症症状的抑郁症病人应合用抗精神病药物,如舒必利或奋乃静,一般中等剂量即可;
11、对伴有明显迟滞、退缩的抑郁症病人可选用中枢神经兴奋药,如利他林、匹莫林等;
12、对难治性抑郁症病人可合并丙戍酸盐治疗;
13、对更年期抑郁症病人可合并激素治疗。
(二)电休克治疗:对抑郁症病人存在木僵和强烈自杀言行者,电休克可收到立竿见影之效果。另外,对难治性抑郁症病人也不失为一种有效的治疗手段。
(三)睡眠剥夺治疗:主要用于内因性抑郁症和难治性抑郁症。其方法是让病人治疗日保持觉醒(必要时可午休30~60分钟),晚上通宵不眠;次日白天继续保持觉醒,且不准午休,直到晚上睡眠为止,作为一次治疗,每周治疗2次,8~10次为一疗程,老年人及伴有严重躯体疾病的病人禁用该疗法。

随着抑郁症患者的日益增多和精神药理学的快速发展,抗抑郁药的新品种开发也与日俱增。临床上常用的抗抑郁药分为如下三类。
(1)三环类抗抑郁药:为目前较常用抗抑郁药,主要有丙咪嗪、阿米替林、多虑平、氯丙咪嗪、去甲丙咪嗪等。其药理作用与阻断脑内去甲肾上腺素及5-羟色胺再摄取有关,可抑制神经末梢突触前膜对去甲肾上腺素和5-羟色胺的再摄取,从而提高受体部位递质浓度,而发挥抗抑郁作用。
(2)二环类、四环类抗抑郁药:以麦普替林为代表,其药理作用与三环类抗抑郁药类似。
(3)单胺氧化酶抑制剂:又分为可逆性和非可逆性两种,可逆性以吗氯贝胺为代表,非可逆性以苯乙肼为代表,由于该类药毒性较大,现已少用。其药理作用为抑制单胺氧化酶,减少去甲肾上腺素、5-羟色胺及多巴胺的降解,使脑内儿茶酚胺含量升高而发挥抗抑郁作用。
目前临床上引进的一些新型抗抑郁剂主要是选择性5-羟色胺回吸收阻滞剂,包括氟西汀、色去林、帕罗西汀等。其药理作用为选择性阻滞神经末梢突触前膜对5-羟色胺的再摄取,从而提高突触间隙5-羟色胺水平,而发挥其强的抗抑郁作用,正是由于该类药物的高度选择性,所以副作用相对较少,病人对该药的依从性高,是具有广阔发展前景的一类新药。

有研究表明,吃药不是对抗抑郁的唯一方法。据“今日美国”消息,在美国,约有50万的儿童和青少年服用抗抑郁药物。还有资料表明目前,少年儿童患抑郁症的比例大大超过以往。相对来说,现在的药物副作用较小,也被认为对儿童更安全。尽管有很多年轻人服用了这些抗抑郁药后取得了明显的进步,但他们服用这些药物并未经过由医生处方。这一问题已引起了部分家长和医生的关注。这些关注有着一个不争的依据:没有一种药物得到美国食品和药物管理委员会的认可可用于少年儿童。这表明该委员会并未承认这些抗抑郁药物对于少年儿童来说是安全有效的。家长和教师们也在思考难道药物才是对抗抑郁症的唯一武器吗?家庭和学校又该做些什么呢?美国社会应进一步反省这一现象背后的社会原因。
抑郁症
抑郁症是以精神异常低落花流水为主要临床表现的精神疾病,其患病率仍为3-5%,该颊多于春秋季节发病或加重,且有反复发作的倾向,与人们所熟悉的悲伤相似,但较持久,病人轻者情绪低落,整日忧心忡忡,悉眉不燕尾服,唉声叹气;重者则忧郁沮丧,悲观绝望,会觉得“度日如年”“生不如死”,他们越是自责自罪,便越产生消极的想法,美好的世界在他们眼中变成一片灰色。
许多人害怕承认自己患难与共抑郁症,怕因此被人误认为得了“精神病”而竭力否认和掩饰自己的病情,这只会延误治疗时机,并使抑郁症转为为慢性,变成难治的疾病。
抑郁症患难与共者不会因为情绪低落而去看心理医生,他们往往为了治疗抑郁症伴发的头痛、头晕、乏力、记忆力下降等系列躯体症状状,到综合性医院的内科或神经科就医,致使部分患者误诊为“神经官能症状”“更年期综合症”“偏头痛”“失眠症”等,或到中医科被诊断为“阴虚血虚”之类。
识别典型的抑郁症的一个简单的方法,即一个人的抑郁情绪持续两周以上,同时伴有下述9项症状的任何4项以上:
1. 兴趣丧失或无愉快感,感到没有任何事件能够使他们高兴起来。
2. 精力减退或持续疲乏,体力难以恢复,躺在床上都感到累。
3. 活动减少或动作迟滞,一天的大部分时间只想在床上度过。
4. 过分自责或内疚,为自己过去一些微小的过失责备自己。
5. 联想困难或注意力不能集中,感到大脑犹如停滞了一样。
6. 反复出现轻生的想法或行为。
7. 失眠或早醒,早上抑郁情绪突出。
8. 体重降低或食欲下降,甚至拒食。
9. 性欲下降,甚至全无。
抑郁症常见类型有如下几种:
1. 内源性抑郁症。
2. 心里性抑郁症。
3. 继发性抑郁症。
治疗:
除了使用抗抑郁药物这个共同原则外,上述不同类型抑郁症的治疗方式也是各有侧重的,治疗内源性抑郁症主要是依靠药物,必要时可使用电休克疗法;治疗心理性抑郁症状和抑郁性神经症,则应以心理治疗为主,用亲切和同情态度,鼓励病人倒出内心的郁闷,并给予指导和帮助,使患者能适庆环境及取得社会的支持;继发性抑郁症的治疗庆力图清除致病因素,并尽力治疗躯体,疾病;更年期抑郁症内分泌功能较紊乱者可用激素治疗。

选择性剥夺眼快动睡眠为什么能治疗抑郁症?
用选择性剥夺眼快动睡眠法治疗抑郁症是沃格尔(1968)等研究者于六十年代后期创用的。他们之所以想到用这种治疗方法,是受到以下三方面的启示:
(1)治疗抑郁症的有效方法是电休克和抗抑郁药物,无论电休克还是抗抑郁药物都有明显的阻抑眼快动睡眠的作用。因此,剥夺眼快动睡眠有可能产生治疗抑郁症的效果。
(2)服用利血平的人有时会出现药源性抑郁症,而利血平有增加眼快动睡眠的作用。这是有力的佐证。
(3)在动物实验中,剥夺眼快动睡眠往往能增强与本能有关的行为,实验动物的活动增加,食欲和性欲都亢进。而抑郁症的临床表现是活动减少,食欲和性欲减退。因而考虑剥夺眼快动睡眠可能对行为产生治疗作用。
实践证明选择性剥夺眼快动睡眠能使抑郁发作缓解。但是这种治疗方法需要有睡眠实验室的检查设备及人员配置,相当费事,疗效不比服用抗抑郁药物优越,所以无临床推广价值。

本文地址:http://www.dadaojiayuan.com/jiankang/238783.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章