美国杜克大学研究人员模仿人体细胞内复杂的基因调控过程,在实验室造出一种人工系统,能再现多种蛋白质是怎样相互作用打开一个基因的。这种新系统能帮助那些基础研究人员,作为他们检查基因“打开”或“关闭”效果的一种工具,并为开发新的基因疗法、促进合成生物学速生研究等领域带来利益。相关论文在线发表于最近的《自然―方法学》杂志上。
人体细胞大约含有2万个基因,会产生大量的蛋白质,很多基因也会影响到其他基因的活动。如能理解这些基因之间的相互作用,就能从整体上提高生物医学研究水平。但在天然系统中,基因之间的相互作用极其复杂。研究人员介绍说,他们模仿这些作用,造出了一些较简单的基因网络,如能对其中每个组成部分实现精确控制,就可以用它们来实验生物传感、生物计算、再生疗法,甚至作为更复杂的天然系统的模型。
“人类基因不仅仅是打开或关闭那么简单,它们可以在大范围里不同程度地被激活。天然基因是由许多蛋白质相互作用来调控的,因此在同一生物系统内也会产生不同的结果。”杜克大学普拉特工程学院生物医学工程副教授查尔斯?杰斯拜奇解释说,在他们设计的人工系统中,用一种蛋白质来控制基因的活性水平。“我们‘自上而下’地分析了天然的基因网络,开发出一种‘自下而上’的方法,能模拟多种蛋白质是怎样通过复杂的相互作用来调控一个基因的。这种方法与一般的遗传学方法不同,让我们能打开细胞内部的基因,深入到以往无法触及的水平。”
指导该实验的高级研究员帕布罗?皮尔兹-佩内拉说:“目前我们对天然基因调控的基本机制还知之甚少,新系统可以作为一种强有力的探测工具,进一步推动合成生物学发展,提高对哺乳动物的生物编程能力。”
“所有的生物系统都依赖基因调控,生物工程人员要面对的挑战就是怎样在人工合成过程中再现这一自然过程。”杰斯拜奇说。对于合成生物学来说,新研究还可作为一种合成蛋白质的新技术,比如一种叫做转录激活因子样效应子(tales)的人造酶,几乎能跟任何基因序列“绑”在一起。这些tales很容易生产,人们可以造出大量的tales来控制特殊基因。
生命科学最大的基础工程
生物技术在过去的几十年风起云涌,70年代出现的重组DNA,使得人们有可能按照需求生产出基因工程的药物。到了80年代,转基因技术在农业方面的应用极大地提高了农作物、动物的产量和品质。90年代有代表性的进展就是克隆技术,使得重组生命成为可能,这是很伟大的进步。信息技术在很大程度上改变了社会,正如未来学家所说,信息技术使我们能够做的更多做得更快、更好。但是,生命科学、生物技术有可能改变人类自身,改变未来社会的发展,其影响更重大。从总体上看,生命科学无论从揭示未知领域的广度深度,从产业化的巨大前景,保证人类基本的物质生活的需求,强身健体的需要,还是推动整个人类的进步来说,都是非常重要的一个领域,因此说21世纪是生命科学的世纪是很有道理的。
人类基因组研究是目前生命科学领域里的一项最大的基础工程。生命活动在相当大的程度上是受遗传因素影响的,要理解生命,战胜疾病,提高健康,就必须对控制生命的遗传信息有所了解,而且不是支离破碎的了解,是整体化的了解。所谓基因组是生命遗传信息的总合,它不是个体基因的概念,它是所有基因在一起,再加上那些调控基因的遗传信息。这个项目的驱动因素也是双重性的,一个是科学家的好奇心,求知欲望,像任何其他基础科学一样;另外一个巨大的驱动力就是人类健康的一种需求。
生命科学要揭示的奥秘很多,整个框架搭起来的过程就是从具象到微象,从大到小,由表及里,但到达"里"以后发现,对个别的孤立的分子进行研究,恐怕不能揭示其中的规律,这样就从分析进入到综合。进入到人类基因组时代,生命科学全新形态,即大科学形态,系统科学形态,交叉科学形态。人类基因组揭示的信息量大概只有天文的数字可以与之相比。如果把生物的变异性考虑进去的话,这种海量信息的储存、分析、传输,收集,把信息从数据变成知识,这就要求信息技术、数学等加入进来,所以生物信息学产生了。要在同一时间研究所有的基因、所有的蛋白质的表达和相互作用,是一种系统科学的研究方法。为了进行这样的分析,新的平台就要发展,比如生物芯片,在一个指甲盖大小的面积上可以把人类的所有基因,将来可能发展到所有的蛋白,都放在这个小的平面上,用定型化来进行系统化的研究。当今的生命科学的大科学平台,为我们揭示生命的奥秘提供了可能。破译"天书"只为造福社会
经过全球科学家包括中国科学家的努力,2000年6月人类基因组计划完成了框架测序,大概再过两三年,到2003年就可以把人类基因组的精细的序列完成。中国科学家承担的的1%的任务完成得还是非常优秀的,在6个国家中最早地完成了自己应该承担的区域的精细测序。也就是说,第一份人类的遗传"天书"已经展现在我们眼前,但是我们还不怎么读得懂。现在提出功能基因组计划,就是要理解这个"天书"里说的是什么内容,"天书"上的信息是怎么表达的,这种表达又是如何控制的,这种表达、控制和环境又是如何相互作用的,这种相互作用在人类的健康和疾病当中又是怎么样变化的。
人的生老病死这些活动,实际上既有遗传因素,又有环境因素。人类基因组计划研究的意义最后还是体现在对人类的实际贡献上,尤其体现在对人类重大疾病的防治上来。这里又有一个医学基因组问题。基因组是有变异的,不是一成不变的,这就为遗传信息的变异奠定了基础。为什么在一些人群和家族中比较容易发生某些疾病,比如高血压、肥胖症等。据调查,目前中国人中有25%超重,少儿肥胖者达7-8%,而且增长速度很快。这里既有遗传因素又有其他因素,医学基因组学就是要搞清那些遗传疾病的原因及其防治办法。由于人的千差万别,对于疾病的易感性,对药物的反应性包括对疗效的反应性和对副作用的反应性,都跟遗传信息的变异有关,所以,不仅要"天书"读出来,而且要把人群、个体之间主要差异,就是把"天书"里的那些符号识别出来。
基因技术提供无限商机
基因技术对医药行业来说是提供了无限商机,一部分基因的蛋白质产物可以直接用来做药,大多数基因蛋白质的产物可以用来筛选药物。化学药物在身体里作用的靶点,主要是基因编码的蛋白质。以前是先有化合物,再来一点点识别这个化合物作用在哪些靶位上。现在反过来了,先知道那么多的靶点,再来筛选化合物,这样药物发现的速度就加快了。识别疾病基因就使疾病的诊断进入到基因诊断阶段,对异常的基因进行替代,就产生了基因治疗。
人类基因组发展到今天,主要就是从整理天书到真正的生物学功能,然后应用于人类的治疗疾病、健康和医药上。人类基因组计划也推动了对其他生命基因组的研究,推而广之,还包括了对简单生命体的基因组,比如大肠杆菌一直到植物,比如水稻再到动物的研究。仅仅看到人类基因天书,很难理解为什么是人类,什么让我们区别于其他动物。把生命天书拿出来,从最简单的生命体到最复杂的人类生命进化过程中,不同阶段的生命体的遗传特性,拿出来进行比较,就可以发现在基因组水平进化的规律,了解基因组的结构和功能怎么样从简单到复杂,由低级到高级发展的。这个计划的带动对解析生命科学的最复杂问题如进化、发育、脑功能等,都有巨大作用。
中国的生命科学研究过去几十年来走过了一条艰难曲折的道路。直到20世纪80年代末期,基因组科学在很落后的情况下,争取一个很快的发展。因为基因学科是带动学科,中国的科学发生了前所未有的整合、发展,促进了生命科学的发展。应该说,人类基因组的参与,开始是跟踪,后来是参与,后来是人类疾病的研究,如果说人类疾病组的研究我们还只是补充、跟踪、参与,那么,水稻基因组的研究,我们就是主角。目前,多个课题研究进展顺利,预计2002年这些成果都可能以长篇论文的方式,在国际上最著名的重要专业刊物上发表。基因工程是生命科学的重要组成部分,比如说,分子生物学跟基因组的工作就有千丝万缕的联系。在前沿学科,我们有了比较大的进展,从耳聋的基因到血压基因、指趾基因,从白血病、肝癌到肌体瘤、鼻咽癌等等。实际上,在肿瘤基因方面,中国是国际上最早涉及的国家之一。基因研究的成果,在医学科学上起子一个很大的带动作用。
在前沿生物高科技领域,中国科学家能产生任何一种已知的生物药品。我们已经掌握了20多种生物克隆的核心技术,新近的克隆羊、克隆牛,已有成功的报道。转基因已走进生产领域,国内的基因棉花,可以和国外的转基因棉花一决雌雄。生物信息学平台已初步建立起来,而且形成一些自己的特色,在其它墓因组的研究中都已得到很好的发挥。 把知识变成经济竞争力
虽然中国的生物科学研究成果非常喜人,但离国家的要求差距还很大。加入WTO就暴露出我们的差距非常之大。在生命科学领域,我觉得有两个重要课题:一是如何提高农业的品质,另一个如何把国家的制药工业搞上去。
中国农业的效率、效益不高,竞争力不够,农民富不起来,科学界有责任啊!如何让农产品不仅是数量上,而且是质量上提高,同时不要以牺牲环境、资源为代价,只能靠科学技术。农民正眼巴巴地等着科技人员去解决农业生产上许多问题。农民富不起来,中国的现代化也是一句空话。这是吃饭的问题。
再看吃药的问题。现在中国虽然是药物生产大国,但是我们的技术创新能力很低,我们的研究能力、创新药物能力很低,90%以上都是仿制药物。我们在国际中药市场上只占3%的份额,严重落后于日本、韩国等国。当健康水平不断提高,医疗条件不断改善,总体上已经控制了大部分危性传染病,营养性(营养缺陷)的疾病也会逐步消失,将来退行性疾病会成为主要的危害。包括老年痴呆症、器官功能退化等。还有代谢性疾病,如心血管、脑血管疾病,脚颤,糖尿病等等。生老病死,由盛到衰,衰就是人体在衰老过程中的器官功能的减退,并由此引起的疾病。此外,还有外伤、器官损伤等等,进行组织和器官的再造,由此产生一个重大需求。面对这些疾病成为人类健康的障碍时,就提出了一种医学,叫"再生医学",包括减缓衰老和替代人体衰老的器官。完全由非生命材料造成的人工器官,还存在很大的局限性,所以,器官再造就成为很引人注目的生物技术发展的新潮流。在这一过程中,干细胞技术、克隆技术提供了一个条件,带来了医学新的曙光。
现在的一个重要问题是,如何把我们基础研究所积累起来的知识,要变成产品,变成市场,变成经济上的竞争力。这里首先需要科研人员转变观念,需要进行技术创新。
参考资料:/html/2282.htm
回答者:tianzhu345 - 门吏 三级 6-12 19:38
评价已经被关闭 目前有 2 个人评价
好
100% (2) 不好
0% (0)
什么是基因?
含特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。除某些病毒的基因由核糖核酸(RNA)构成以外,多数生物的基因由脱氧核糖核酸(DNA)构成,并在染色体上作线状排列。基因一词通常指染色体基因。在真核生物中,由于染色体都在细胞核内,所以又称为核基因。位于线粒体和叶绿体等细胞器中的基因则称为染色体外基因、核外基因或细胞质基因,也可以分别称为线粒体基因、质粒和叶绿体基因。
在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。原核生物的基因组是一个单纯的DNA或RNA分子,因此又称为基因带,通常也称为它的染色体。
基因在染色体上的位置称为座位,每个基因都有自己特定的座位。凡是在同源染色体上占据相同座位的基因都称为等位基因。在自然群体中往往有一种占多数的(因此常被视为正常的)等位基因,称为野生型基因;同一座位上的其他等位基因一般都直接或间接地由野生型基因通过突变产生,相对于野生型基因,称它们为突变型基因。在二倍体的细胞或个体内有两个同源染色体,所以每一个座位上有两个等位基因。如果这两个等位基因是相同的,那么就这个基因座位来讲,这种细胞或个体称为纯合体;如果这两个等位基因是不同的,就称为杂合体。在杂合体中,两个不同的等位基因往往只表现一个基因的性状,这个基因称为显性基因,另一个基因则称为隐性基因。在二倍体的生物群体中等位基因往往不止两个,两个以上的等位基因称为复等位基因。不过有一部分早期认为是属于复等位基因的基因,实际上并不是真正的等位,而是在功能上密切相关、在位置上又邻接的几个基因,所以把它们另称为拟等位基因。某些表型效应差异极少的复等位基因的存在很容易被忽视,通过特殊的遗传学分析可以分辨出存在于野生群体中的几个等位基因。这种从性状上难以区分的复等位基因称为同等位基因。许多编码同工酶的基因也是同等位基因。
属于同一染色体的基因构成一个连锁群(见连锁和交换)。基因在染色体上的位置一般并不反映它们在生理功能上的性质和关系,但它们的位置和排列也不完全是随机的。在细菌中编码同一生物合成途径中有关酶的一系列基因常排列在一起,构成一个操纵子(见基因调控);在人、果蝇和小鼠等不同的生物中,也常发现在作用上有关的几个基因排列在一起,构成一个基因复合体或基因簇或者称为一个拟等位基因系列或复合基因。
功能、类别和数目 到目前为止在果蝇中已经发现的基因不下于1000个, 在大肠杆菌中已经定位的基因大约也有1000个,由基因决定的性状虽然千差万别,但是许多基因的原初功能却基本相同。
功能 1945年G.W.比德尔通过对脉孢菌的研究,提出了一个基因一种酶假设,认为基因的原初功能都是决定蛋白质的一级结构(即编码组成肽链的氨基酸序列)。这一假设在50年代得到充分的验证。
类别 60年代初F.雅各布和J.莫诺发现了调节基因。把基因区分为结构基因和调节基因是着眼于这些基因所编码的蛋白质的作用:凡是编码酶蛋白、血红蛋白、胶原蛋白或晶体蛋白等蛋白质的基因都称为结构基因;凡是编码阻遏或激活结构基因转录的蛋白质的基因都称为调节基因。但是从基因的原初功能这一角度来看,它们都是编码蛋白质。根据原初功能(即基因的产物)基因可分为:①编码蛋白质的基因。包括编码酶和结构蛋白的结构基因以及编码作用于结构基因的阻遏蛋白或激活蛋白的调节基因。②没有翻译产物的基因。转录成为RNA以后不再翻译成为蛋白质的转移核糖核酸(tRNA)基因和核糖体核酸(rRNA)基因:③不转录的DNA区段。如启动区、操纵基因等等。前者是转录时RNA多聚酶开始和DNA结合的部位;后者是阻遏蛋白或激活蛋白和DNA结合的部位。已经发现在果蝇中有影响发育过程的各种时空关系的突变型,控制时空关系的基因有时序基因 、格局基因 、选择基因等(见发生遗传学)。
一个生物体内的各个基因的作用时间常不相同,有一部分基因在复制前转录,称为早期基因;有一部分基因在复制后转录,称为晚期基因。一个基因发生突变而使几种看来没有关系的性状同时改变,这个基因就称为多效基因。
数目 不同生物的基因数目有很大差异,已经确知RNA噬菌体MS2只有3个基因,而哺乳动物的每一细胞中至少有100万个基因。但其中极大部分为重复序列,而非重复的序列中,编码肽链的基因估计不超过10万个。除了单纯的重复基因外,还有一些结构和功能都相似的为数众多的基因,它们往往紧密连锁,构成所谓基因复合体或叫做基因家族。
相互作用
生物的一切表型都是蛋白质活性的表现。换句话说,生物的各种性状几乎都是基因相互作用的结果。所谓相互作用,一般都是代谢产物的相互作用,只有少数情况涉及基因直接产物,即蛋白质之间的相互作用。
非等位基因的相互作用 依据非等位基因相互作用的性质可以将它们归纳为:
①互补基因。若干非等位基因只有同时存在时才出现某一性状,其中任何一个发生突变时都会导致同一突变型性状,这些基因称为互补基因。
②异位显性基因。影响同一性状的两个非等位基因在一起时,得以表现性状的基因称为异位显性基因或称上位基因。
③累加基因。对于同一性状的表型来讲,几个非等位基因中的每一个都只有部分的影响,这样的几个基因称为累加基因或多基因。在累加基因中每一个基因只有较小的一部分表型效应,所以又称为微效基因。相对于微效基因来讲,由单个基因决定某一性状的基因称为主效基因。
④修饰基因。本身具有或者没有任何表型效应,可是和另一突变基因同时存在便会影响另一基因的表现程度的基因。如果本身具有同一表型效应则和累加基因没有区别。
⑤抑制基因。一个基因发生突变后使另一突变基因的表型效应消失而恢复野生型表型,称前一基因为后一基因的抑制基因。如果前一基因本身具有表型效应则抑制基因和异位显性基因没有区别。
⑥调节基因。一个基因如果对另一个或几个基因具有阻遏作用或激活作用则称该基因为调节基因。调节基因通过对被调节的结构基因转录的控制而发挥作用。具有阻遏作用的调节基因不同于抑制基因,因为抑制基因作用于突变基因而且本身就是突变基因,调节基因则作用于野生型基因而且本身也是野生型基因。
⑦微效多基因。影响同一性状的基因为数较多,以致无法在杂交子代中明显地区分它们的类型,这些基因统称为微效多基因或称多基因。
⑧背景基因型。从理论上看,任何一个基因的作用都要受到同一细胞中其他基因的影响。除了人们正在研究的少数基因以外,其余的全部基因构成所谓的背景基因型或称残余基因型。
等位基因的相互作用 1932年H.J.马勒依据突变型基因与野生型等位基因的关系归纳为无效基因、亚效基因、超效基因、新效基因和反效基因。
①无效基因。不能产生野生型表型的、完全失去活性的突变型基因。一般的无效基因却能通过回复突变而成为野生型基因。
②亚效基因。表型效应在性质上相同于野生型,可是在程度上次于野生型的突变型基因。
③超效基因。表型效应超过野生型等位基因的突变型基因。
④新效基因。产生野生型等位基因所没有的新性状的突变型基因。
⑤反效基因。作用和野生型等位基因相对抗的突变型基因。
⑥镶嵌显性。对于某一性状来讲,一个等位基因影响身体的一个部分,另一等位基因则影响身体的另一部分,而在杂合体中两个部分都受到影响的现象称为镶嵌显性。
基因和环境因素的相互作用 基因作用的表现离不开内在的和外在的环境的影响。在具有特定基因的一群个体中,表现该基因性状的个体的百分数称为外显率;在具有特定基因而又表现该一性状的个体中,对于该一性状的表现程度称为表现度。外显率和表现度都受内在环境和外在环境的影响。
内在环境 指生物的性别、年龄等条件以及背景基因型。
①性别。性别对于基因作用的影响实际上是性激素对基因作用的影响。性激素为基因所控制,所以实质上这些都是基因相互作用的结果。
②年龄。人类中各个基因显示它的表型的年龄有很大的区别。
③背景基因型。通过选择,可以改变动植物品系的某一遗传性状的外显率和表现度,说明一些基因的作用往往受到一系列修饰基因或者背景基因型的影响。
由于背景基因型的差异而造成的影响,在下述3种情况中可以减低到最低限度:由高度近交得来的纯系;一卵双生儿;无性繁殖系(包括某些高等植物的无性繁殖系、微生物的无性繁殖系以及高等动物的细胞株)。用这些体系作为实验系统,可以更为明确地显示环境因素的影响,更为确切地说明某一基因的作用。双生儿法在人类遗传学中的应用及纯系生物在遗传学和许多生物学研究中的应用都是根据这一原理。
外在环境 ①温度。温度敏感突变型只能在某些温度中表现出突变型的性状,对于一般的突变型来说,温度对于基因的作用也有程度不等的影响。②营养。家兔脂肪的黄色决定于基因y的纯合状态以及食物中的叶黄素的存在。如果食物中不含有叶黄素,那么yy纯合体的脂肪也并不呈黄色。y基因的作用显然和叶黄素的同化有关。
演化 就细胞中DNA的含量来看,一般愈是低等的生物含量愈低,愈是高等的生物含量愈高。就基因的数量和种类来讲,一般愈是低等的生物愈少,愈是高等的生物愈多。DNA含量和基因数的增加与生理功能的逐渐完备是密切相关的。
基因最初是一个抽象的符号,后来证实它是在染色体上占有一定位置的遗传的功能单位。大肠杆菌乳糖操纵子中的基因的分离和离体条件下转录的实现进一步说明基因是实体。今已可以在试管中对基因进行改造(见重组DNA技术)甚至人工合成基因。对基因的结构、功能、重组、突变以及基因表达的调控和相互作用的研究始终是遗传学研究的中心课题。
■什么是基因治疗?
在认识和熟练使用遗传生物学单位基因的新近进展后,它已经为科学家去改变病人的遗传物质,以达到治病防病的目的迈向新的一步。基因治疗的一个主要目标是用一种缺陷基因的健康复制去提供给细胞。这一方法是革命性的:医生试图通过改变病人细胞的遗传物质,来代替给病人治疗或控制遗传疾病的药物,最终达到医治病人疾病的根本目的。
几百个主要健康问题受到基因功能的影响。在将来,基因治疗能被用于医治许多这类疾病。理论上讲为了防止遗传缺陷传给下一代,还能用于改变胚胎细胞(蛋或种子)。然而,胚胎家系基因治疗的可能性受到困难的伦理道德、社会问题和技术障碍牵制。
基因治疗还作为药物输送系统使用,为了做到这点,产生有用物质的基因将被嵌进病人细胞的DNA中。例如,在血管外科中,产生抗凝血因子的基因能被嵌入血管细胞家系的DNA中,有助于防止血栓的形成。许多其它疾病可使用这一般方法治疗来提高本身的可靠性。
当医疗治疗提高到分子水平时,药物输送使用基因治疗能节约时间减低成本。为收集大量的基因蛋白产品、提纯产品、合成药物和对病人的管理缩短了时间减少了复杂的工艺加工。
然而,基因治疗仍是处于极端新的和高度的实验阶段。被批准的试验数量是小的,今天只有少量的病人曾得到过治疗。
目前基因治疗实验的基本步骤
在目前的某些实验中,从病人的血液或骨髓中取出细胞,并在加速繁殖的实验条件下生长。然后,把需要的基因借助于不起作用的病毒嵌进细胞。选择出获得成功改变的细胞再加速繁殖,再回到病人的体内。另一种情况,脂质体(脂肪颗粒)或不起作用的病毒可被用于把基因直接输进病人体内细胞。
基因治疗的基本要求
基因治疗的潜力
基因治疗为治愈人类疾病提供了新的范例。不是通过制剂与基因产品或自身基因产品相互作用来改变疾病的表现型,而是基因治疗理论上能修正特殊基因,导致沿着简单化的管理治愈疾病。开始基因治疗是针对治疗遗传性疾病,但目前对广泛性的疾病进行研究,包括癌症、外周血管疾病、关节炎、神经变性疾病和其它后天疾病。
基因确认和克隆
即使基因治疗战略性的范围是相当多样化,成功的基因治疗也需要一定的关键的基本要素。其中最重要的要素是必须确认和克隆有关的基因。直到人类基因组计划完成,基因的有效度才被利用。但仍然等到涉及疾病的相关基因被确认和克隆出来才开始实施基因治疗战略。
转基因和基因表达
一旦确认和克隆出基因,下一步必须表达出来。有关转基因和基因表达的效率属于基因治疗研究的前沿问题。最近基因治疗领域的许多争论围绕把所希望的基因转入合适的细胞中,然后为疾病治疗获得满意的表达水平。希望将来对转基因和特殊组织基因表达的研究将在主要基因治疗试验中解决这一课题。基因治疗战略的其它认识包括:充分掌握靶点疾病的发病机理,潜在的基因治疗副作用,理解接受基因治疗的靶细胞。
术语:
与大多数领域一样,基因治疗有专门的术语,下列提供的将阐明某些最普通术语的意思。
体外转基因:
把遗传物质转至寄主外部的细胞。经遗传物质移植后的细胞再回到寄主中。这个术语还被称为转基因的非直接方法。
体内转基因 :
遗传物质转入寄主体内的细胞。这还被称为转基因的直接方法。
基因治疗:
把选择过的基因转入具有改善或治愈疾病希望的寄主中。
细胞治疗(基因组治疗):
把未经遗传性修正的完整的细胞转入寄主中,使被转移的细胞将产生促进与寄主结合并改善寄主功能的希望。
体细胞转化:
把基因转入非种系组织中,它具有校正病人疾病状态的希望。
种系基因:
把基因转入种系组织中(蛋或胚胎),它有希望改变下一代的基因组。
转基因:
在转基因实验中,选择试验基因。例如,如果你给患苯并酮尿症病人治病,你可计划把一校正过的苯丙氨酸羟基酶基因译本移入肝细胞中。在这个例子中,苯丙氨酸羟基酶的校正译本就是转基因。
报告基因:
常用于试验基因转换效率的基因。例子是luceriferase, --半乳糖和氯氨素乙烯转化酶。
基因转化载体:
基因被转移进细胞的机理。
转化率:
正在表达所期望的转基因百分率。
本文地址:http://www.dadaojiayuan.com/jiankang/122648.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!