登录
首页 >> 中医基础常识 >> 杂谈

中国科学家吹响研发蛋白药物的号角

医案日记 2023-06-16 01:21:41

中国科学家吹响研发蛋白药物的号角

新华网北京7月11日电(记者李斌)随着“蛋白质与多肽药物实验室”日前在中国科学院生物物理研究所成立,中国科学家吹响了研发“蛋白药物”的号角。

新成立的实验室将在以下几个方面集中力量进行研究:人源化的单克隆抗体类药物、重组细胞因子和酶类药物,新的蛋白质靶点的鉴定和基于靶蛋白的高通量药物筛选及基于蛋白质结构的药物设计也将成为研究的重点。

中科院生物物理研究所所长饶子和院士说,生物医学目前越来越以蛋白质为核心,这一实验室的成立将集中研究所以往在蛋白质研究上的力量,进一步明确目标,为蛋白质产业在我国成长壮大做出贡献。

中科院生物物理研究所是我国蛋白质研究和开发的“重镇”,这个研究所的科学家和国内同行一起在世界上首次人工合成了有活性的牛胰岛素,测定了牛胰岛素的晶体结构,并在蛋白质药物领域创办了两个初具规模的企业,促进了蛋白质产业的发展。

生物体的一切活动或功能都离不开蛋白质的物质基础,基因的功能最终要通过其表达产物——蛋白质来实现。发现和鉴定具有重要功能的蛋白质,可为新药的开发带来决定的影响。蛋白质科学已成为当今生命科学的前沿,也是生物产业发展的重要源泉。(完)

重磅!国产原创新药获准上市 阿尔茨海默病终于迎来新药

阿尔茨海默病的药物领域,迎来一枚国产原创的“重磅炸弹”。

2019年11月2日,阿尔茨海默病(Alzheimers Disease,下称“AD”)国产原创新药获准上市,填补了这一领域17年无新药上市的空白。药品监督管理局于批准了上海绿谷制药有限公司治疗阿尔茨海默病新药——九期一(甘露特钠,代号:GV-971)的上市申请,“用于轻度至中度阿尔茨海默病,改善患者认知功能”。九期一通过优先审评审批程序在中国大陆的上市为全球首次上市。

这款中国原创、国际首个靶向脑-肠轴的阿尔茨海默病治疗新药,将为阿尔茨海默病患者提供新的治疗方案。

“全球任何一家公司如果能够研发出延缓AD进展的药物,将是一个‘超级重磅炸弹’。”礼来神经科学领域医学总监吴胜虎曾如是对第一财经记者表示。

阿尔茨海默病主要表现为认知功能和行为障碍及精神异常等症状,是继心脑血管疾病和恶性肿瘤之后,老年人致残、致死的第三大疾病。

全球目前至少有5000万阿尔茨海默病患者,到2050年,这个数字预计将达到1.5亿左右。2018年,全球治疗及照料费用已达万亿美元,给患者家庭和社会带来沉重负担。中国阿尔茨海默病患者约1000万人,是世界上患者人数最多的。随着人口老龄化加速,预计到2050年我国患者将达4000万人。

自发现阿尔茨海默病100多年来,全球用于临床治疗的药物只有5款,临床获益不明显。全球各大制药公司在过去的20多年里,相继投入数千亿美元研发新的阿尔茨海默病治疗药物,320余个进入临床研究的药物已宣告失败。就在不久前,美国生物技术公司百健(Biogen)与其日本合作伙伴卫材(Eisai)宣布,将向美国食品药品管理局(FDA)申请早期阿尔兹海默症治疗药物“Aducanumab”的上市许可,引起业界震惊。

九期一是由中国科学院上海药物研究所耿美玉研究员领导研究团队,在中国海洋大学、中国科学院上海药物研究所与上海绿谷制药有限公司接续努力研发成功的原创新药。

该药主要发明人、中国科学院上海药物研究所耿美玉研究员介绍,临床前作用机制表明,九期一通过重塑肠道菌群平衡,抑制肠道菌群特定代谢产物的异常增多,减少外周及中枢炎症,降低β淀粉样蛋白沉积和Tau蛋白过度磷酸化,从而改善认知功能障碍。

九期一3期临床主要牵头研究者、上海交通大学医学院附属精神卫生中心肖世富教授表示:“阿尔茨海默病目前的药物治疗还是对症治疗,且可供选用的药物不多,不能延缓或阻止病程进展。基于九期一新的作用机制和独特的临床疗效特征,相信该药能够为阿尔茨海默病治疗提供新方案。”

上海绿谷制药方面表示,已经做好生产、销售的各项准备,药品年内投放市场。

阿尔茨海默病患福音!这一国产创新药获批上市

创新药“九期一”有条件批准上市 用于轻度至中度阿尔茨海默病

我国原创治疗阿尔茨海默病新药获准上市 以海洋褐藻提取物为原料

(文章来源:第一财经)

重组蛋白质药物的优点有哪些?

) 基本原料简单易得

多肽和蛋白质类药物主要以20种天然氨基酸为基本结构单元依序连接而得,代谢物氨基酸为人体生长的基本营养成分,可通过农产品发酵而制备。

2)药效高,副作用低, 不蓄积中毒

多肽和蛋白质类药物本身是人体内源性物质或针对生物体内调控因子研发而得,通过参与,介入,促进或抑制人体内或细菌病毒中生理生化过程而发挥作用,副作用低,药效高,针对性强,不会蓄积于体内而引起中毒。

3)用途广泛,品种繁多,新型药物层出不穷

多肽和蛋白质类药物是目前医药研发领域中最活跃, 进展最快的部分,是二十一世纪最有前途的产业之一。将20种基本氨基酸按不同序列相互连接,

可得到品种繁多,可用于治疗各种类型疾病的多肽和蛋白质类药物。众多新型多肽和蛋白质类药物在治疗艾滋病,癌症,肝炎,糖尿病,慢性疼痛效果显著。

4) 研发过程目标明确,针对性强

借助生命科学领域取得的大量研究成果, 包括对各类疾病发病机理的揭示, 对体内各种酶, 辅酶, 生长代谢调节因子的深入认识, 可以针对性开展多肽和蛋白质类药物的研发。

医药生物的生物技术的三次革命

生物制药业的发展可以说与生物技术的科技革新息息相关。从1973年发明基因工程技术到1990年启动人类基因组计划,再到2001年后人类基因组测序完成之后的后基因组计划发展,经历了三次主要的生物技术革新。伴随着相关技术应用,产生了不同类型的生物制药产品,造就了三类不同的生物制药公司。
一、基因重组技术——产业化的开端
最早的一批生物制药公司主要利用基因工程的技术来获得蛋白质。由于科学家对部分蛋白如胰岛素、人体生长激素、EPO、tPA、第VIII因子等的加工过程以及可能存在的疗效了解较多,这类蛋白也就成了第一批生物技术公司开发的重点。我们称为“采用基因工程的加工技术来生产蛋白质”。
绝大部分重组蛋白药物是人体蛋白或其突变体,主要作用机理为弥补某些体内功能蛋白的缺陷或增加人体内蛋白功能,安全性显著高于小分子药物。虽然生产条件苛刻,服用程序复杂且价格昂贵,但对某些疾病具有不可替代的治疗作用,因而具有较高的批准率。同时,重组蛋白药物的临床试验期要短于小分子药物,专利保护相对延长,给了制药公司更长的独家盈利时间。这些特点成为重组蛋白药物研发的重要动力。
当今全球第一和第二的生物制药公司——安进(Amgen)和基因泰克(Genentech)
是这类生物技术公司的代表。安进由一群科学家和风险投资商于1980年创建,并于1983年在Nasdaq上市。但直到1989年6月,安进的第一个产品重组人红细胞生成素(EPO,商品名EPOGEN)才获得美国FDA批准。1991年2月,公司第二个产品重组粒细胞集落刺激因子(G-CSF,商品名NEUPOGEN)获得批准。EPO和G-CSF都是正常人体产生的蛋白质。在基因重组技术诞生前,EPO主要从贫血患者的尿和绵羊血中提取,提取率非常低,且极不稳定。1983年,人EPO基因克隆和表达的成功,使rh-EPO(recombinant human EPO)的制备成为现实。
经过二十多年的发展,EPO和G-CSF成为了全球商业化最为成功的生物技术药物之一,为安进带来了巨额的利润,公司也因此迅速壮大,成为世界上最大的生物制药企业。
全球第二大生物制药公司基因泰克(Genentech)最初也是进行生物技术“加工”。
1976年4月,一家风险投资公司合伙人与DNA重组领域奠基人、诺贝尔奖金获得者Boyer教授创建了基因泰克。公司开发出重组人胰岛素、重组人生长因子、生长激素抑制素、tPA、第VIII因子等蛋白产品,完成了最初的积累。
基因工程生产蛋白质药物是生物技术产业中最成功的领域之一,也是新药开发的重要发展方向之一。如今,重组蛋白药物虽然仅占全球处方药市场的7-8%,但发展非常迅速,1989年重组蛋白药物的销售额为47亿美元,到2005年达到410亿美元,几乎是1989年的9倍。
二、人类基因组计划——“生命密码”的破译
第二次技术革命发生在一个特殊的时刻,2001年。这是新千年的纪元,也是人类生物技术发展史上可谓空前绝后的一个里程碑。在这一年,以美国为发起者,在全球范围内以基因测序、基因组织结构分析为核心技术内容的人类基因组计划(HGP)基本完成。HGP于1990年正式启动,目标是对构成人类基因组的30亿个碱基精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。
人体中有万亿个细胞,每一秒都有数以百万计的化合物被合成,数千个相关生物化学反应发生。所有这些都依赖于每个细胞中的DNA精确地指导合成人体必需的建筑材料——蛋白质。在这些过程中,任何地方的一个小失误都会导致病态或者死亡。因此,引起疾病的基因可能是药品开发潜在的靶目标。即使在估计的3万-10万的所有人类基因中,只有5%-10%能够产生可行的药品研发靶位点,它仍然为制药业的药品研制开辟一个富饶的矿脉。毕竟,在过去的一百年中,药品研究的艰苦努力仅仅局限于500个左右靶目标的医学开发。
生命密码的破译促使诞生了新一类的生物技术公司,我们称它们为“将基因和分子生物学领域先进技术作为研究工具”的公司。1993年,曾供职于礼来、基因泰克和一家风投公司的Levin以850万美元的风险投资基金创立了作为基因组计划产业化的标志性企业——千年制药公司(Millennium Pharmaceuticals)。
千年制药建立起了一个技术平台,研究发现基因在疾病中的重要角色,主要盈利来源是技术转让以及与大型传统制药企业的合作研发。1997年,千年收购了一家生物技术公司ChemGenics,这提升了它寻找具有下游开发潜力药品靶位点的能力。
千年对上中下游的掌控能力使之成功地吸引了大合作伙伴,建立了合作联盟。例如1997年,拜尔和千年签署了一项协议,规定千年将负责为拜尔发现225种新的药品靶位点,而过去的一个世纪中,全球总共也只发现了500个药品靶位点。与拜尔的交易成为制药业和生物技术公司有史以来最大的联盟之一。
三、后基因组时代——从生命本质寻找药物
随着人类基因组计划完成,生命科学研究进入了后基因组时代,主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。在应用研究方面,蛋白质组学将成为寻找疾病分子标记和药物靶标最有效的方法之一。
目前的技术发展最具应用潜力的是蛋白质结构功能模拟技术。简单的讲,人们可以利用这一技术设计完成所需要功能的蛋白质分子。但是因为现有模拟方法涉及的计算机算法较为繁琐和初级,在大分子模拟的效率和准确性上都存在较大不足,导致应用面受到限制。但是小分子结构功能模拟在应用层面则初现端倪。比较有代表性的就是分子设计在治疗型单抗和治疗型疫苗药物中的应用。
从原理上来说,治疗型单抗更适合内源性疾病。内源性疾病指的是不由外源病原体引起的,因为机体基因的突变、异常表达或基因本身遗传易感导致正常生理功能无法实现而产生的疾病。比如说类风湿关节炎就是一种自身免疫性疾病。针对这样的疾病,因为异常基因和机体正常基因相似性很高,理论上讲只能使用具有高度专一性的单克隆抗体分子才能将它们区分,并随后引发不同的免疫反应将异常分子清除。
而治疗型疫苗更加适合治疗外源性的病原性疾病。致病因子一般都是外源性的病原微生物。这些病原分子能够通过一定的机制逃避机体免疫系统的识别和清除,并对正常的机体分子产生影响,破坏机体正常的生理平衡。治疗型疫苗的设计主要依靠模拟病原分子,并通过模拟计算病原分子与免疫系统受体分子的相互作用,对疫苗进行相关位点的改进,以打破病原分子逃避免疫系统的机制,产生强烈的免疫反应而清除病原。由于疫苗分子与病原分子在结构上有较高的相似性,因此疫苗分子对机体产生的毒性应该与病原分子相当,采用这种治疗方案不会因为产生额外的毒性而受到限制使用。
1、治疗型单克隆抗体
杂交瘤技术的突破使得科学家可以建立免疫细胞与永生化肿瘤细胞的杂交瘤细胞,制备特异的选择性抗体分子,即单克隆抗体(MAb)。单克隆抗体药物研究被视为后基因组时代基因蛋白功能研究与药物发现的命脉,已成为国际生物技术领域开发热点,是目前全球生物技术界最为注目的一个领域。
由于具有高度特异性,单抗即可被当作一种治疗药物,也可被用作传递药物的载体。单抗的临床转化率和批准成功率较高,例如治疗癌症的单抗药物批准成功率接近30%。因为生产条件的复杂性,单抗药物即使在专利保护到期后也不易被仿制,不易受通用名药品价格的威胁。更为重要的是,已上市的抗体药物具有很高的市场回报率。随着治疗性单抗市场高速发展,欧美市场上市的20个单抗药物中就有6个销售额过10亿美元的“重磅炸弹”药物。
Genentech在这个领域获得了极大的成功。1995年,Genentech收购了IDEC公司研制的名为Rituxan的新药,这是第一种成功瞄准癌细胞蛋白质的单克隆抗体药物,用于早期淋巴瘤的治疗,1997年获得FDA的批准。现在Rituxan已成为美国最畅销的药品之一。
随后,Genentech又相继开发了几种治疗性单抗并获得FDA批准上市,这些产品上市以来销售额快速增长,该公司也一举跃居世界第二大生物制药企业。
目前上市的单抗药物适应症主要集中在肿瘤和免疫性疾病方面。肿瘤治疗一直是抗体药物研发最活跃的领域,目前上市的抗体药物中用于肿瘤治疗的单抗占最大比例,进行临床II期或III期试验的候选抗体药物中40%用于抗肿瘤治疗。单抗对相应的抗原具有高度特异性,这是其靶向性抗肿瘤作用的分子基础,因此,确定并利用与肿瘤细胞相关的分子靶点是研制单抗药物的关键。
最早上市的单抗药物为鼠源抗体。由于人体内产生人抗鼠抗体(HAMA)反应,临床上面临一定的风险,因此人源化是单抗药物的发展趋向。
2、治疗型疫苗
治疗型疫苗(Therapeutic Vaccine)是另一类靶向治疗药物,是能够打破患者体内免疫耐受,重建或增强免疫应答的新型疫苗。治疗型疫苗能在已患病个体诱导特异性免疫应答,消除病原体或异常细胞,使疾病得以治疗。主要应用于目前尚无有效治疗药物的疾病如肿瘤、自身免疫病、慢性感染、移植排斥、超敏反应等。
与治疗型单抗相同的是,肿瘤治疗也是国际上治疗型疫苗的最主要应用领域,与单抗不同的是,治疗型疫苗多运用于病原体引发的肿瘤治疗。从产业化情况来看,治疗型疫苗的研发及商业化进程步履蹒跚,迄今为止,治疗型疫苗在开发过程中临床研究或商业推广失败的例子不胜枚举。尽管在一些以特殊研究对象为基础的小样本临床研究中,治疗型疫苗表现出了较好的疗效,但以美国这个全球最为重要的医药市场来说,至今只有两例治疗型疫苗获得批准。究其原因,主要在于:
第一,众多实体肿瘤缺乏特异性抗原,尽管目前已在实体肿瘤中发现了500多种肿瘤抗原,但只有少数抗原较为特异,且这些抗原免疫原性较弱。即便在癌症预防性疫苗研究领域,由美国Merck公司研制的专门针对宫颈癌和生殖器官癌前病变的癌症疫苗才于2006年9月获得FDA批准上市,其之所以取得较好的临床效果,与宫颈癌病因明确是分不开的,而宫颈癌也只是人类历史上少数几个找到明确病因的肿瘤之一。
第二,疫苗缺乏有效的抗原递呈。现有的疫苗在此环节上存在两个问题:一是进入的大部分疫苗与APC不能充分接触难以实现抗原递呈;二是即使有少量疫苗被APC捕获,也因抗原表达量甚微难以发挥有效的抗原递呈。
第三,如何打破机体免疫耐受。尽管目前通过采用共刺激分子修饰的疫苗有可能打破机体对肿瘤的免疫耐受,但目前尚缺乏有效的实验数据。
尽管如此,治疗型疫苗具有的靶向性治疗特点仍然吸引着许多公司跃跃欲试,目前全球有超过65家公司在研167个治疗型疫苗产品,特别是在肿瘤治疗领域,预防和治疗型癌症疫苗的出现被称为本世纪制药界最值得期望的突破之一。有研究报告显示,癌症疫苗市场2007年将达4.81亿美元,2012年将超过80亿美元。

本文地址:http://www.dadaojiayuan.com/zhongyizatan/71933.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章