登录
首页 >> 诸子百家 >> 历史探究

几何原本简介,原本定义是什么样的

众妙之门 2023-07-01 13:53:46

几何原本简介,原本定义是什么样的

《几何原本》(希腊语:Στοιχεῖα)又称《原本》。是古希腊数学家欧几里得所著的一部数学著作。它是欧洲数学的基础,总结了平面几何五大公设,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。欧几里得使用了公理化的方法。这一方法后来成了建立任何知识体系的典范,在差不多二千年间,被奉为必须遵守的严密思维的范例。这本著作是欧几里得几何的基础,在西方是仅次于《圣经》而流传最广的书籍。

原本介绍

《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作。并把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。

这部书已经基本囊括了几何学从公元前7世纪的古埃及,一直到公元前4世纪——欧几里得生活时期——前后总共400多年的数学发展历史。它不仅保存了许多古希腊早期的几何学理论,而且通过欧几里得开创性的系统整理和完整阐述,使这些远古的数学思想发扬光大。

它开创了古典数论的研究,在一系列公理、定义、公设的基础上,创立了欧几里得几何学体系,成为用公理化方法建立起来的数学演绎体系的最早典范。

欧几里得所著的《原本》大约成书于公元前300年,原书早已失传。全书共分13卷。书中包含了5个“公设(Axioms)”、5条“一般性概念(Common Notions)”、23个定义(Definitions)和48个命题(Propositions)。在每一卷内容当中,欧几里得都采用了与前人完全不同的叙述方式,即先提出公理、公设和定义,然后再由简到繁地证明它们。这使得全书的论述更加紧凑和明快。

而在整部书的内容安排上,也同样贯彻了他的这种独具匠心的安排。它由浅到深,从简至繁,先后论述了直边形、圆、比例论、相似形、数、立体几何以及穷竭法等内容。其中有关穷竭法的讨论,成为近代微积分思想的来源。

照欧氏几何学的体系,所有的定理都是从一些确定的、不需证明而礴然为真的基本命题即公理演绎出来的。在这种演绎推理中,对定理的每个证明必须或者以公理为前提,或者以先前就已被证明了的定理为前提,最后做出结论。对后世产生了深远的影响。它标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。

两千多年来,《几何原本》一直是学习数学几何部分的主要教材。哥白尼、伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。

1582年,来自意大利的天主教神父利玛窦到中国传教,带来了15卷本的《原本》。1600年,明代数学家徐光启(1562-1633)与利玛窦相识后,便经常来往。1607年,他们把该书的前6卷平面几何部分合译成中文,并改名为《几何原本》。后9卷是1857年由中国清代数学家李善兰(1811-1882)和英国人伟烈亚力译完的。

原本定义

注:《几何原本》中有“公设”与“公理”之分,近代数学对此不再区分,都称“公理”。

定义

23条

点是没有部分的

线只有长度而没有宽度

一线的两端是点

直线是它上面的点一样地平放着的线

面只有长度和宽度

面的边缘是线

平面是它上面的线一样地平放着的面

平面角是在一平面内但不在一条直线上的两条相交线相互的倾斜度

当包含角的两条线都是直线时,这个角叫做直线角

当一条直线和另一条直线交成邻角彼此相等时,这些角的每一个叫做直角,而且称这一条直线垂直于另一条直线。

大于直角的角叫钝角

小于直角的角叫锐角

边界是物体的边缘

图形是一个边界或者几个边界所围成的

圆:由一条线包围着的平面图形,其内有一点与这条线上任何一个点所连成的线段都相等

这个点(指定义15中提到的那个点)叫做圆心。

圆的直径是任意一条经过圆心的直线在两个方向被圆截得的线段,且把圆二等分

半圆是直径与被它切割的圆弧所围成的图形,半圆的圆心与原圆心相同(接17)

直线形是由线段围成的,三边形是由三条线段围成的,四边形是由四条线围成的,多边形是由四条以上线段围成的

在三边形中,三条边相等的,叫做等边三角形;只有两条边相等的,叫做等腰三角形;各边不等的,叫做不等边三角形

此外,在三边形中,有一角是直角的,叫做直角三角形;有一个角是钝角的,叫做钝角三角形;有三个角是锐角的,叫做锐角三角形

在四边形中,四边相等且四个角是直角的,叫做正方形;角是直角,但四边不全相等的,叫做长方形;四边相等,但角不是直角的,叫做菱形;对角相等且对边相等,但边不全相等且角不是直角的,叫做斜方形;其余的四边形叫做不规则四边形

平行直线是在同一个平面内向两端无限延长不能相交的直线

公理

1.等于同量的量彼此相等;

2.等量加等量,其和相等;

3.等量减等量,其差相等;

4.彼此能完全重合的物体是全等的;

5.整体大于部分。

公设

1.过两点能作且只能作一直线;

2.线段(有限直线)可以无限地延长;

3.以任一点为圆心,任意长为半径,可作一圆;

4.凡是直角都相等;

5.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。(近代数学不区分公设,公理,统一称为公理)

——以上选自《几何原本》 第一卷《几何基础》

最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。值得注意的是,第五公设既不能说是正确也不能说是错误,它所概括的是一种情况。非欧几何则在推翻第五公设的前提下进行了另外情况的讨论。

欧几里得几何原本的内容简介

欧几里得的伟大贡献在于他将这些材料做了整理,并在书中作了全面的系统阐述。这包括首次对公理和公设作了适当的选择(这是非常困难的工作,需要超乎寻常的判断力和洞察力)。然后,他仔细地将这些定理做了安排,使每一个定理与以前的定理在逻辑上前后一致。在需要的地方,他对缺少的步骤和不足的证明也作了补充。值得一提的是,《欧几里得几何原本》虽然基本上是平面和立体几何的发展,也包括大量代数和数论的内容。
《欧几里得几何原本》作为教科书使用了两千多年。在形成文字的教科书之中,无疑它是最成功的。欧几里得的杰出工作,使以前类似的东西黯然失色。该书问世之后,很快取代了以前的几何教科书,而后者也就很快在人们的记忆中消失了。《欧几里得几何原本》是用希腊文写成的,后来被翻译成多种文字。它首版于1482年,即谷登堡发明活字印刷术3O多年之后。自那时以来,《欧几里得几何原本》已经出版了上千种不同版本。
在训练人的逻辑推理思维方面,《欧几里得几何原本》比亚里土多德的任何一本有关逻辑的著作影响都大得多。在完整的演绎推理结构方面,这是一个十分杰出的典范。正因为如此,自本书问世以来,思想家们为之而倾倒。

几何原本的具体内容是什么

  几何:是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。暂时的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。常见定理有勾股定理,欧拉定理,斯图尔特定理等。

什么是几何学?

学过数学的人,都知道它有一门分科叫作“几何学”,然而却不一定知道“几何”这个名称是怎么来的。在我国古代,这门数学分科并不叫“几何”,而是叫作“形学”。“几何”二字,在中文里原先也不是一个数学专有名词,而是个虚词,意思是“多少”。比如三国时曹操那首著名的《龟虽寿》诗,有这么两句:“对酒当歌,人生几何?”这里的“几何”就是多少的意思。那么,是谁首先把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的呢?这是明末杰出的科学家徐光启。 ==简史==

几何学有悠久的历史。最古老的[[欧氏几何]]基于一组公设和定义,人们在公设的基础上运用基本的逻辑推理构做出一系列的命题。可以说,《[[几何原本]]》是公理化系统的第一个范例,对西方数学思想的发展影响深远。

一千年后,[[笛卡儿]]在《[[方法论]]》的附录《几何》中,将[[坐标]]引入几何,带来革命性进步。从此几何问题能以[[代数]]的形式来表达。实际上,几何问题的代数化在[[中国数学史]]上是显著的方法。笛卡儿的创造,是否有东方数学的影响在里面,由于东西方数学交流史研究的欠缺,尚不得而知。

欧几里得几何学的第五公设,由于并不自明,引起了历代数学家的关注。最终,由罗巴切夫斯基和黎曼建立起两种非欧几何。

几何学的现代化则归功于[[克莱因]]、[[希尔伯特]]等人。克莱因在普吕克的影响下,应用群论的观点将几何变换视为特定不变量约束下的变换群。而希尔比特为几何奠定了真正的科学的公理化基础。应该指出几何学的公理化,影响是极其深远的,它对整个数学的严密化具有极其重要的先导作用。它对数理逻辑学家的启发也是相当深刻的。

==古代几何学==

几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于公元前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。

中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。

==名称的来历==

几何这个词最早来自于希腊语“γεωμετρ?α”,由“γ?α”(土地)和“μετρε ?ν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。

1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一次的使用出现。

==分支学科==

平面几何

立体几何

非欧几何

罗氏几何

黎曼几何

解析几何

射影几何

仿射几何

代数几何

微分几何

计算几何

拓扑学

参考文献

《世界数学史简编》,梁宗巨,1981年,辽宁人民出版社,第90页~第92页

==几何学的发展简史==
由于人类生产和生活的需要,产生了几何学。
在原始社会里,人类在生产和生活中,积累了许多有关物体的形状、大小和相互之间的位置关系的知识。例如,古代的人们认识他们的猎物的形状、大小,记住它们的居住地与打猎地之间的距离,以及打猎地在居住地的那个方位。
随着人类社会的不断发展,人们对物体的形状、大小和相互之间的位置关系的认识愈来愈丰富,逐渐地积累起较丰富的几何学知识。
相传四千年前,埃及的尼罗河每年洪水泛滥,总是把两岸的土地淹没,水退后,使土地的界线不分明。当时埃及的劳动人民为了重新测出被洪水淹没的土地的地界,每年总要进行土地测量,因此,积累了许多测量土地方面的知识。从而产生了几何学的初步知识。
后来,希腊人由于跟埃及人通商,从埃及学到了测量与绘画等的几何初步知识。希腊人在这些几何初步知识的基础上,逐步充实并提高成为一门完整的几何学。“几何学”这个词,是来自希腊文,原来的意义是“测量土地技术”。“几何学”这个词一直沿用到今天。
公元前338年,希腊人欧几里德,把在他以前的埃及和希腊人的几何学知识加以系统的总结和整理,写了一本书,书名叫做《几何原本》。1607年,我国的数学家徐光启和西方人利玛窦合作,把欧几里德的《几何原本》第一次介绍到我国。欧几里德的《几何原本》是几何学史上有深远影响的一本书。目前,我们学习的几何学课本多是以《几何原本》为依据编写的。
我国对几何学的研究也有悠久的历史。在公元前一千年前,在我国的黑陶文化时期,陶器上的花纹就有菱形、正方形和圆内接正方形等许多几何图形。公元前五百年,在墨翟所著的《墨经》里有几何图形的一些知识。在《九章算术》里,记载了土地面积和物体体积的计算方法。在《周髀算经》里,记载了直角三角形的三边之间的关系。这就是著名的“勾三股四弦五”的勾股定理,也称为“商高定理”。商高发现了直角三角形的勾股定理。祖冲之的圆周率也是著称世界的。还有我国古代数学家刘徽、王孝通等对几何学都作出了重大的贡献。
随着工农业生产和科学技术的不断发展,几何学的知识也越来越丰富,研究的方面也越来越广阔。

本文地址:http://www.dadaojiayuan.com/lishitanjiu/63883.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章