登录
首页 >> 健康生活

同济大学最新Nature:国际首次发现植入前胚胎组蛋白修饰建立过程

佚名 2024-06-02 12:43:39

同济大学最新Nature:国际首次发现植入前胚胎组蛋白修饰建立过程

2016年09月12日讯 由同济大学附属第一妇婴保健院首席科学家高绍荣研究团队的相关科学新发现,在国际著名学术期刊《Nature》在线发表。该研究团队采用最新研究技术,从全基因组水平上揭示了哺乳动物植入前胚胎发育过程中的组蛋白H3K4me3和HK27me3修饰建立过程,并发现宽的(broad)H3K4me3修饰在植入前胚胎发育过程中对基因表达发挥重要调控作用。这是国际上的首次重大发现。

这一突破性成果,为优化植入前胚胎的质量提供可能,有助于提高辅助生殖技术的成功率,未来可有更多反复流产、胚胎停育、不孕不育患者获益。

哺乳动物的发育起始于精子和卵母细胞结合后的受精卵,早期胚胎在植入前发育过程中经历了剧烈的表观遗传修饰的变化并第一次出现细胞分化。如果在这一过程中组蛋白修饰出现异常就会导致胚胎发育异常,甚至植入前胚胎死亡。此项研究结果揭示了组蛋白修饰在早期胚胎发育的过程中起非常重要的作用。对其进行深入研究,为植入前胚胎发育以及早期细胞分化的表观遗传调控机制并最终提高辅助生殖成功率打开了一扇新的大门。

为了更好地、全面地了解组蛋白修饰变化,在本研究中,高绍荣研究团队利用并改进了最新发表的适用于低起始量细胞的新型技术。采用该技术利用极少量的细胞检测了小鼠植入前胚胎发育各个时期的组蛋白H3K4me3和H3K27me3修饰变化情况,这两个修饰分别对应基因的表达和沉默,这是目前已知的第一次系统地对哺乳动物植入前胚胎的组蛋白修饰进行全基因组水平上的检测。

他们通过分析发现这两组组蛋白修饰的建立规律明显不同:H3K4me3修饰的建立更迅速,而H3K27me3修饰的建立比较缓慢,并且两者倾向建立的启动子区域不同。重要的是,在早期胚胎发育过程中,宽的H3K4me3修饰作为一种可调节的表观遗传修饰精确调控了各个时期基因的表达,并且可能在更多的生理过程中发挥重要作用。

该研究第一次建立起了哺乳动物植入前胚胎发育过程中的组蛋白H3K4me3和H3K27me3修饰图谱,并发现了植入前胚胎发育特殊的表观遗传调控机制。将来在辅助生殖技术的运用中,在胚胎植入前,就可先筛查优劣,并有可能优化胚胎质量,从而提高辅助生殖胚胎植入后的成功率,造福更多渴望新生命的不孕家庭,为将来提高辅助生殖成功率提供基础研究和发展方向。临床转化之路虽然漫长,但是希望就在眼前。

高绍荣教授、高亚威副教授和张勇教授为该论文的共同通讯作者,同济大学附属第一妇婴保健院转化医学研究中心的刘晓雨、刘文强等四人为本文的并列第一作者。

人类早期胚胎发育DNA甲基化图景

人类早期胚胎发育DNA甲基化图景——表观遗传学—胚胎发育系列第1篇

DNA甲基化是一种重要的表观遗传修饰在基因转录表达、基因印记的维持、X染色体失活和转座子元件的表达等一系列生物学过程中扮演重要的角色。

哺乳动物中最具有戏剧性的表观组变化发生在原始生殖细胞和胚胎植入前的发育过程。

为了获取人类早期胚胎的DNA甲基化图谱,作者使用全基因组简化甲基化测序(RRBS)和全基因组甲基化测序(WGBS)技术对人类配子和植入前后的 胚胎进行了研究。

本研究使用的材料如下:

使用的材料为极体(polar body)、成熟卵母细胞(oocytes)和第一极体、合子(zygotes)、 2细胞、4细胞、8细胞、桑椹胚(morula)、内细胞团(inner cell mass,ICM)和囊胚阶段的滋养层细胞(trophectoderm cells,TE),此外还有精细胞。

不同类型细胞的DNA甲基化水平聚类显示,不同类型细胞间有各自独特的甲基化特征。

例如:极体和卵母细间的甲基化状态相似,而与其他类型细胞差别较大;精细胞甲基化状态与其他类型细胞有明显的区别;2细胞-TE发育过程中甲基化状态变化比较平稳。

在基因体(gene body)层面和不同发育阶段层面,不同类型、发育时期细胞的甲基化转态变化明显。

小鼠中甲基化擦除主要发生在合子-2细胞过程,而人类胚胎发育中去甲基化和甲基化重建又有什么特点呢?不同的基因组区域的甲基化水平变化是否同步?

对不同CpG含量的启动子(HCP、ICP、LCP)、CpG岛(CGI)、外显子(Exon)、内含子(Intron)、基因(Intragenic)、基因间区(Intergenic)、转座子元件(细分为SINE、LINE、LTR)和增强子(Enhancer)的甲基化水平进行计算,绘制动态发育过程甲基化水平的变化。
结果发现,整体上不同基因组区域的甲基化动态变化相似,说明胚胎发育过程中全基因组的甲基化变化趋势一致,是一个统一的过程。但也能发现高CpG的区域如CGI和HCP一直是去甲基化状态且甲基化水平相对稳定。

此外,对第1极体和第2极体的甲基化水平进行比较,二者从卵母细胞取出的过程是对甲基化状态产生了影响以及二者是否本身就存在较大的甲基化水平的差异。

结果发现,第1、2极体和卵母细胞的甲基化水平差别不大,说明从卵母细胞中挤压出极体的过程中没有产生全基因组甲基化的非对称性。

有文献报道小鼠中卵母细胞中non-CpG的DNA甲基化水平,而人类卵母细胞尚未有相关报道。

绘制gene body侧翼non-CpG甲基化曲线发现,non-CpG甲基化水平较低,gene body的甲基化水平明显高于侧翼,且整体分布形态和CpG甲基化模式相似。
不同类型胞嘧啶的甲基化水平存在差异那么,DNA甲基化水平和胞嘧啶的密度是否存在关系?

胚胎发育过程中甲基化发生了剧烈的变化,那么去甲基化的过程中父源和母源基因组的甲基化动态如何呢?
使用单细胞RRBS技术对分离出的父源、母源的原核进行测序,并分析了DNA甲基化水平的动态变化。

可见,父源和母源的原核的甲基化动态变化非常的剧烈且并不一致。配子阶段精细胞甲基化水平较卵母细胞稍高,显微注射后的数十个小时里发生了较大的变化,父源和母源原核甲基化水平迅速下降,父源的去甲基化程度更大,最终父源的甲基化水平比母源的要低形成反转,免疫荧光染色也证实了这一点。

接下来,对精细胞和卵母细胞的甲基化相似性和差异性进行了分析。使用固定长度区域(100bp)来计算全基因组的tile甲基化水平,并分别对高甲基化(≥75%)和低甲基化(≤25%)区域进行分析。

分析高甲基化和低甲基化区域的分布特点发现,高甲基化区域显著富集于SINE和LINE等转座子元件,用于抑制转座元件的转录活性。而低甲基化区域富集于HCP、增强子、外显子和CpG岛,用于维持胚胎发育。
此外,还对卵母细胞和精细胞间的差异甲基化区域(differentially methylated regions,DMR)进行了研究,分别鉴定出了17,473个精细胞特异的DMRs和12,145个卵母细胞特异的DMRs。

接下来,对DNA甲基化与组蛋白修饰间的关系进行了探讨。

结果发现,胚胎干细胞和ICM阶段H3K27me3区域通常富含低水平的DNA甲基化,配子和中间的发育阶段同样存在低甲基化的现象。

随后,对基因表达和DNA甲基化间的关系进行探讨。

分别对基因体和启动子的甲基化水平与基因表达量间的相关性进行了计算,结果发现,基因和启动子的 甲基化水平与基因的表达量呈负相关的关系,且发育后期的负相关性越来越高。这说明,在DNA甲基化的擦除和重建的各个阶段,启动子的DNA甲基化仍然会抑制相关基因的表达。

最后,对DNA甲基化是如何抑制转座子元件的机制进行了探讨。以常见的长散在重复序列(LINE)和短散在重复序列(SINE)进行了探讨。

在不同发育阶段,重复元件的表达与DNA甲基化的区域呈现负相关。胚胎发育早期DNA甲基化被擦除,重复元件的表达水平提升,后期DNA甲基化水平重建重复元件的表达水平被强烈抑制,维持较低的水平(图a,c)。此外,Alu、MIR、L1和L2的平均甲基化水平符合全基因组甲基化水平的变化。

本文对人类早期胚胎不同发育阶段样本的DNA甲基化水平进行了探讨,对DNA甲基化、组蛋白修饰、基因表达和转座子元件间的关系进行了研究。

人类早期胚胎发育的各个阶段全基因组的甲基化水平发生了剧烈的变化,发生了从去甲基化到甲基化重建的过程;不同发育阶段的细胞有其特有的差异甲基化区域;DNA甲基化与不类型的组蛋白修饰有完全不同的相关性,说DNA甲基化和不同类型的组蛋白修饰各自调控着一套基因集;转座子元件和DNA甲基化关系也十分密切,同样经历了擦除和重建的过程;另外,DNA甲基化的状态同时影响了基因的表达,尤其是发育后期启动子区域的甲基化与基因表达的负相关性明显增强。

总之,该文系统的研究了人类早期胚胎发育不同阶段的DNA甲基化情况,首次展示了人类早期胚胎的表观图景,为以后深入研究胚胎发育机制奠定了基础。

The DNA methylation landscape of human early embryos. NATURE. 2014. doi:10.1038/nature13544

简化甲基化测序和甲基化测序的区别

什么是DNA甲基化?
简单来说,DNA甲基化就是在DNA甲基化转移酶(DNMT)的作用下将甲基选择性地添加到胞嘧啶上形成5′-甲基胞嘧啶的过程。DNA甲基化是最早发现的基因表观修饰方式之一,在维持正常细胞功能、遗传印记、胚胎发育和肿瘤发生发展中起着重要作用,是目前及未来很长一段时间的研究热点之一。

DNA甲基化测序
随着高通量测序技术的发展,我们能够从全基因组水平来分析5’-甲基胞嘧啶及组蛋白修饰等事件,发现很多基因组学研究发现不了的东西,这就是 “DNA甲基化测序”!且近年来测序成本的不断下降及测序技术的迭代更新,DNA甲基化测序方法可选择性更多了。
目前表观遗传学DNA甲基化研究测序方法常见的有:全基因组重亚硫酸盐甲基化测序[WGBS]、精准DNA甲基化和羟甲基化测序[oxBS-seq]、优化版简化甲基化测序[RRBS/dRRBS/XRBS]、单/微量细胞全基因组甲基化测序[scWGBS]、扩增子(羟)甲基化测序、(羟)甲基化DNA免疫共沉淀测序[(h)MeDIP-seq]等6种,适用于不同DNA甲基化研究方向的解决方案。
(1)全基因组重亚硫酸盐甲基化测序(WGBS)
全基因组重亚硫酸盐甲基化测序(WGBS)可以在全基因组范围内精确的检测所有单个胞嘧啶碱基(C碱基)的甲基化水平,是DNA甲基化研究的金标准。WGBS能为基因组DNA甲基化时空特异性修饰的研究提供重要技术支持,能广泛应用在个体发育、衰老和疾病等生命过程的机制研究中,也是各物种甲基化图谱研究的首选方法。
常规全基因组甲基化测序技术通过T4-DNA连接酶,在超声波打断基因组DNA片段的两端连接接头序列,连接产物通过重亚硫酸盐处理将未甲基化修饰的胞嘧啶C转变为尿嘧啶U,进而通过接头序列介导的 PCR 技术将尿嘧啶U转变为胸腺嘧啶T。
技术优势:
l 应用范围广:适用于人和大多数动植物研究(参考基因组已知)
l 全基因组覆盖:最大限度地获取完整的全基因组甲基化信息,精确绘制甲基化图谱
l 单碱基分辨率:可精确分析每一个C碱基的甲基化状态
研究案例:
Whole-Genome Bisulfite Sequencing of Two Distinct Interconvertible DNA Methylomes of Mouse Embryonic Stem Cells. 两种状态的小鼠胚胎干细胞的甲基化组学研究
① 背景
小鼠胚胎干细胞一般生长在含有血清的基质中,被称作血清干细胞(serum ESCs);加两种激酶抑制因子使胚胎干细胞在无血清的情况下更能保持多能性的基态,这种干细胞称为2i干细胞(2i ESCs);这两种状态的胚胎干细胞可以互相转化。以前这方面的甲基化研究大多基于质谱,覆盖度和研究结果有限,尚缺乏2i胚胎干细胞的甲基化组学研究。
② 方法
利用全基因组重亚硫酸盐甲基化测序(WGBS),对这两种可互相转换的小鼠胚胎干细胞进行甲基化组学研究
③ 结论
全面准确的检测了两种小鼠胚胎干细胞的DNA甲基化修饰并进行了系统的比较;同serum ESCs相比,雄性2iESCs全局低甲基化;在血清中,雌性ESCs跟雄性2i ESCs类似呈现全局低甲基化,而在2i ESCs状态下,甲基化水平会进一步降低。
(2)精准DNA甲基化和羟甲基化测序(oxBS-seq)
DNA羟甲基化是近年发现的一种新的DNA修饰并迅速成为研究热点。随着研究的深入,发现之前被认为是检测DNA甲基化“金标准”的重亚硫酸盐测序并不能区分DNA甲基化(5mC)和DNA羟甲基化(5hmC)。易基因联合剑桥大学建立了化学氧化法结合重亚硫酸盐转化的测序技术(oxidative bisulfite sequencing, oxBS-Seq),该技术不仅可以精确检测DNA甲基化,排除DNA羟甲基化的影响,还可以双文库结合同时单碱基分辨率精确检测DNA羟甲基化。
技术原理:
oxBS-Seq将5hmC氧化5fC,后者可以被Bisulfite转为U,从而实现5mC的精准检测;同时,经过与常规Bisulfite结果比较可以实现对5hmC的准确检测。

技术优势:
l DNA甲基化检测全新的“金标准”
l 全基因组单碱基检测DNA羟甲基化修饰
l 多重标准验证高氧化效率和高Bisulfite转换率
l 实验偏好性低,重复性高(R?>0.98)
l 可满足多种测序应用需求:简化基因组氧化甲基化测序(oxRRBS),目标区域氧化甲基化测序(Target-oxBS)

研究案例:
Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution (oxBS 技术单碱基检测5mC和5hmC在鼠胚胎干细胞中的水平)
① 背景
随着5hmC在哺乳动物基因组中的发现,传统的bisulfite测序已不能精确区分5mC和5hmC的修饰差异,传统BS的测序结果中,5mC的修饰水平实际是5mC和5hmC两者信号的合集,建立一种精确区分两者的实验技术迫在眉睫。
② 方法
利用oxBS测序技术对小鼠胚胎干细胞DNA甲基化和羟甲基化进行检测和定量。
③ 结论
本研究首次建立了通过化学氧化结合重亚硫酸盐处理的实验技术。该技术首先将5hmC氧化为5fC,进而可被重亚硫酸盐转换成U,从而排除了5hmC对5mC的信号干扰,达到精确检测基因组5mC的目的。运用该技术对小鼠胚胎干细胞的研究发现,5hmC在CGI相关的转录调控区域和LINE1元件中含量较高,表明其对表观重编程可能起到重要作用。
(3)简化甲基化测序(RRBS/dRRBS/XRBS)
简化甲基化测序(Reduced Representation Bisulfite Sequencing,RRBS)是利用限制性内切酶对基因组进行酶切,富集启动子及CpG岛等重要的表观调控区域并进行重亚硫酸盐测序。该技术显著提高了高CpG区域的测序深度,在CpG岛、启动子区域和增强子元件区域可以获得高精度的分辨率,是一种准确、高效、经济的DNA甲基化研究方法,在大规模临床样本的研究中具有广泛的应用前景。为了适应科研技术的需要,我们进一步开发了可在更大区域内捕获CpG位点的双酶切RRBS(dRRBS),可研究更广泛区域的甲基化,包括CGI shore等区域。
为助力低样本量多维度分析,我们开发了富集覆盖CpG岛、启动子、增强子、CTCF结合位点的甲基化靶向测序方法:extend-ed-representation bisulfite sequencing(XRBS),实现了高灵敏度和样本复用,使其具有高度可扩展性,并适用于有限的样本和单个细胞。
技术优势:
l 精确度高:在其覆盖范围内可达到单碱基分辨率。
l 重复性好:多样本的覆盖区域重复性可达到85%-95%,适用于多样本间的差异分析。
l 性价比高:测序区域针对高CpG区域,数据利用率更高。

研究案例:
DNA Methyltransferase Inhibition Reverses Epigenetically Embedded Phenotypes in Lung Cancer Preferentially Affecting Polycomb Target Genes DNA甲基化的改变对癌症细胞侵袭能力的影响
① 背景
癌细胞的表型在一定程度上由表观决定,比如DNA甲基化。癌症发展后期的转移特性可能与表观遗传修饰的改变有关。
② 方法
利用RRBS技术检测具有高侵袭性的非小细胞肺癌细胞系(A549和HTB56)以及相应经过甲基化抑制剂氮杂胞苷(azacytidine)处理过的细胞系的甲基化修饰。探讨甲基化的改变对肺癌细胞系的侵袭能力的影响。
③ 结论
高侵袭性细胞系在发展过程中,DNA甲基化修饰发生了广泛的改变。同低侵袭能力的细胞系相比,RRBS检测到的CpG富集的区域中有2.5%的区域发生了差异修饰。当使用了DNA甲基化抑制剂azacytidine,伴随着这些高甲基化修饰的位点出现甲基化修饰的丢失,细胞系的侵袭能力也发生了逆转。

5-Azacytidine诱导的侵袭能力逆转

(4)单/微量细胞全基因组甲基化测序(scWGBS)
单细胞及微量样本的DNA甲基化组学研究很大程度上受制于建库测序技术。传统的文库构建方法或类似于基因组DNA的单细胞扩增技术很难应用到甲基化实验过程中。易基因建立了基于线性扩增和单管建库的技术,可充分降低文库偏好性,准确的完成珍贵样本的全基因组甲基化研究。
单细胞及微量珍稀样本的甲基化研究主要应用于肿瘤发生机制,癌症研究,胚胎植入前诊断,胚胎早期发育,生殖细胞重组,干细胞及细胞异质性等研究领域。应用的样本包括单细胞、微量细胞等。
技术优势:
l 超低起始量:单细胞或超低的建库DNA起始量
l 测序覆盖度高 :最大限度地获取完整的全基因组甲基化信息,精确绘制甲基化图谱
l 单碱基分辨率:可精确分析每一个C碱基的甲基化状态
研究案例:
Single-cell DNA methylome sequencing of human preimplantation embryos. 人类植入前胚胎发育的单细胞DNA甲基化组图谱
① 背景
在哺乳动物基因组上,胞嘧啶(主要是CpG二连体中的胞嘧啶)在DNA甲基化酶的催化下会发生甲基化。研究显示,DNA甲基化对多个生物学过程都至关重要,如基因表达抑制、转座子转录活性调节、X染色体的失活,以及基因组印记的维持等。此前研究显示在着床前的早期胚胎发育过程中只有大规模的DNA去甲基化。而此次研究数据显示,精子和卵细胞结合受精之后,在人类早期胚胎大规模DNA去甲基化的同时,也在大量高度特异的DNA从头加甲基化,这表明在人类早期胚胎第一轮DNA甲基化组重编程过程中,全局的DNA去甲基化‘净结果’实际上是高度有序的大规模DNA去甲基化和局部DNA加甲基化两种分子过程相互拮抗产生的动态平衡的结果。
② 方法
利用单细胞DNA甲基化组高通量测序方法,首次在单细胞分辨率对人类植入前胚胎发育过程进行了更加深入的分析。
③ 结论
在这篇文章中,为了进一步在单细胞水平研究DNA甲基化重编程过程的动态特征,利用单细胞全基因组DNA甲基化组高通量测序技术,对人类植入前胚胎发育的各个关键阶段进行了单细胞、单碱基分辨率的系统研究,主要发现有:(a)首次发现了人类植入前胚胎发育过程中存在大量特异性的DNA从头加甲基。(b)首次发现从二细胞胚胎阶段开始父母本基因组上的剩余甲基化水平发生逆转,在同一个单细胞中母本基因组上的剩余甲基化水平显著高于父本基因组上的剩余甲基化水平。(c)首次发现DNA甲基化在早期胚胎卵裂过程中的不对称分配可以用来追溯同一个胚胎中每个细胞的遗传谱系。内容来源:易基因科技

本文地址:http://dadaojiayuan.com/jiankang/298656.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章