登录
首页 >> 健康生活

微软DNA存储新进展:已能保存100本世界名著

中医世家 2024-05-22 23:07:46

微软DNA存储新进展:已能保存100本世界名著

2016年07月08日讯 卡林·施特劳斯(Karin Strauss)表示,DNA是一种优良的存储介质。相对于传统存储技术,DNA存储能带来更高的存储密度。华盛顿大学也参与了这一研究项目。目前,这项技术成本昂贵,操作复杂。不过,微软希望借力生物科技行业的研究成果。由于生物技术的进步,近期DNA读写工具的成本正在下降。DNA被认为是磁带的替代选择,后者是目前用于长期存储的标准介质。

施特劳斯表示:“微软希望看看,我们能否开发出基于DNA的端到端系统去保存信息。这样的系统将是自动化的,并且可用于企业。”她表示,微软开展这一项目的动机在于,当前的电子存储设备发展速度赶不上数据量的增长。“如果你关注当前的项目,那么可以看到,我们无法在期望的成本内保存所有信息。”

IDC预计,到明年,全球范围内保存的数字化数据将达到16万亿GB,其中大部分位于大型数据中心。施特劳斯估计,一个鞋盒那么多的DNA就足以保存100个大型数据中心的数据。

DNA也有着很好的耐久性,尤其是在干燥寒冷的情况下。今年3月,有研究人员宣布,已部分重建了古人类基因。这些古人类的骨骼保存在西班牙一处洞穴里已有超过40万年历史。作为对比,磁带保存数据只有几十年时间,随后就会老化。

将数据保存在DNA之中需要将0和1数据转换为4种核苷酸,即碱基组成的序列。2012年,哈佛大学分子生物学家乔治·切奇(George Church)向DNA中写入了一本5万个单词、数据量不到1MB的书,随后将其印刷在比花粉粒还小的玻璃芯片上。今年,切奇又报告称,已实现了22MB数据的DNA编码。

微软此次则宣布,已成功向数百万DNA写入了10倍于此前的数据量。每个DNA包括150个碱基。

加州大学伯克利分校博士后研究员雷因哈德·赫科尔(Reinhard Heckel)也在研究利用DNA去存储数据。他表示,微软的成功令人关注。不过,阻碍DNA存储技术大规模使用的障碍主要是成本,因为制作订制的DNA分子成本高昂。“如果希望人们接受这一技术,那么你需要这项技术的成本低于磁带。这很难。”

微软并未披露此次DNA数据存储项目耗费的成本,这其中用到了约15亿个碱基。负责合成这些DNA的Twist Bioscience通常每碱基价格为10美分。商用合成技术的成本最低可以达到每碱基0.04美分。读取100万碱基的成本约为1美分。

施特劳斯相信,读写DNA的成本未来几年将会大幅下降。她表示,已有证据表明,这一成本的下降比过去50年中晶体管制造成本降低的降速更快,而晶体管成本的下降是计算技术创新的动力。

2007年,对人类基因组的测序耗资约1000万美元,但到2015年这一成本已下降至1000美元。

FoxPro到底是个什么软件,它有什么用处??

visual foxpro是数据库管理系统,是介于数据库和用户的管理系统,集成开发语言,提供数据库操作前端界面的制作,提供c/s模式开发,提供api和activitx函数和控件的接口,是开发小型数据库的前端工具。

数据库管理系统是一个能够提供数据录入、修改、查询的数据操作软件,具有数据定义、数据操作、数据存储与管理、数据维护、通信等功能,且能够允许多用户使用。另外,数据库管理系统的发展与计算机技术发展密切相关。而且近年来,计算机网络逐渐成为人们生活的重要组成部分。

扩展资料:

按功能划分,数据库管理系统大致可分为6个部分:?

(1)模式翻译:提供数据定义语言(ddl)。用它书写的数据库模式被翻译为内部表示。数据库的逻辑结构、完整性约束和物理储存结构保存在内部的数据字典中。数据库的各种数据操作(如查找、修改、插入和删除等)和数据库的维护管理都是以数据库模式为依据的。

(2)应用程序的编译:把包含着访问数据库语句的应用程序,编译成在dbms支持下可运行的目标程序。?

(3)交互式查询:提供易使用的交互式查询语言,如SQL.DBMS负责执行查询命令,并将查询结果显示在屏幕上。?

(4)数据的组织与存取:提供数据在外围储存设备上的物理组织与存取方法。?

(5)事务运行管理:提供事务运行管理及运行日志,事务运行的安全性监控和数据完整性检查,事务的并发控制及系统恢复等功能。

(6)数据库的维护:为数据库管理员提供软件支持,包括数据安全控制、完整性保障、数据库备份、数据库重组以及性能监控等维护工具。?

计算机有哪些功能?

一谈到计算机很多人就想到了袖珍计算器,计算器是用来进行数值计算的,你可以用它来算账,进行数值的加减乘除。而计算机的用途则要广泛得多,它不仅可以用来进行数值计算,还可以用来进行事务管理、文字处理、图像处理,自动控制、数据处理等。所以要用信息加工或信息处理的概念去了解计算机,科学计算仅是计算机广阔应用领域的一个方面。

刚接触计算机的人,往往被它的种种神奇功能所折服。它能够在浩瀚的太空中,使航天飞机准确地捕捉住卫星;它能够在浩如烟海的资料中迅速查到所需的数据;能够对不测的风云及时作出预报;能够面对错综复杂的市场作出正确决策;不仅能对科学、技术课题进行复杂精确的计算,还能对企业的生产、经营进行全面细致的管理;不仅能够绘画、作曲,还能同世界棋王对奕。总之,它几乎无所不能,它使人类长期的梦想一件件变为现实。

然而,对如此神通广大的东西细加剖析,可以看到计算机又是异常平凡,甚至可以说是最“笨”的东西。因为它无论如何神机妙算,无论能进行多么复杂的计算和推理,归根结底都必须变换成“0”和“1”这两个数值的运算。就是说,计算机用的是二进制运算。

而且对“0”和“1”这两个数值,也还只能做“加法”和“移位”这两种运算。因此,可以说计算机是够“笨”的了。然而这么笨的家伙,怎么就变得那么了不起呢?关键在于它的运算速度比人要快千万倍、甚至几百亿倍。

譬如,一个孩子聪明伶俐,告诉他求25+76,他花0.1秒钟时间便能心算得出结果是101。另一个孩子笨头笨脑不会心算,只会数豆子。告诉他求25+76,他要先数25个豆子,再数76个豆子,然后把它们放在一起,再从头数起,才知道答案是101。这样,他总共要数202次豆子才能得出答案。但是,假如他数得非常快,每秒钟能数2万次豆子,因此他只要0.01秒,便能得出正确答案。所以,从客观效果看,后一个孩子反而比前一个孩子聪明。

在这里,“快”可以一俊遮百丑,“快”是使笨人反而显得聪明的奥秘。只要能够灵活、娴熟地运用最基本的简单动作,便能演出一场场精彩的好戏;只要快到一定程度就能使笨变得聪明。

计算机,顾名思义就是用于计算的机器。自从出现了人类社会以来,人们就一直在提高自身征服自然、改造自然的能力,不断地创造和发明工具。一般的工具将人类从繁重的体力劳动中解放出来,而计算机则是把人们从复杂的脑力劳动中解脱出来,计算机可代替人脑进行繁杂的脑力劳动,因此,计算机又俗称“电脑”。

把电子计算机叫电脑,是因为电子计算机有许多功能,如记忆、计算、识别功能,这和人的大脑很相像。人的大脑大约有150亿个脑神经细胞,相当于银河系中恒星的总数。它们时刻产生着千变万化的电信息、化学信息。大脑的信息贮存量比最大刑的计算机多100万倍。大脑的思考能力、判断力、逻辑推理能力、想像力,都是计算机无法比的。

目前我们接触最多的是微型计算机。微型计算机由微处理器、存储器、输人输出设备等构成微处理器也叫中央处理器,就是我们常说的CPU。存储器,包括内存储器和外存储器。内存储器又叫内存,外存储器通常指磁盘,包括软盘和硬盘。输人输出设备有监视器、键盘、鼠标、打印机等。

当前,计算机已广泛运用于社会各个领域,引起了社会的重大变革。各行各业使用计算机,计算机极大地提高了工作效率,并成为人类进入信息时代,步人信息社会起牵引作用的核心技术之核心,其经济和社会地位都不可动摇。

60年代初期,当第一部高能且具一般使用功能的电脑开发成功时,科学家们不再讨论电脑的操作守则,转而讨论电脑语言。将电脑语言比喻为一种“语言”是完全正确的,因为电脑“语言”有特定的语法、叙述方式、执行动作与问问题的方式。

最早的电脑语言是机器语言,因为它是依照机器运作的方式来形成架构,运作过程中的每一个步骤都仔细地编成机械码,简单来说,“A与B相加结果为C”,可能被编写为“取得输入值A,移至记录1;取得输入值B,移入记录2;将记录1与记录2相加,存储于记录3,取出记录3并打印为值C”。较新的机械语言并非自新的硬件发展出来,而是来自于新的组织思维与表达方式,由于数学逻辑是构成许多电脑语言的模式,数学家们对这方面一直拥有独到的洞察力,至今亦然。电脑语言的下一波演进,便是易于使用,人们只要用简易的英语即可撰写程序,之后再由一种称为解读器的程序解读指令,并将其译成机器语言。机器语言至今仍被普遍使用,不过电脑用户并不易见到,因其仅供电脑本身读取。

尽管如此,电脑程序设计仍旧不是一件容易的事,因此电脑语言与释义的终极目标,便是自然语言的程序设计,如此一来,操作者仅需与电脑交谈,而其所下的指令便会自动转译为电脑所能了解的版本。

比特世界是什么意思?

我们经常把工业化时代称作是原子的时代,把信息化时代称作是比特的时代。我们为什么要这样讲呢?大家知道,原子组成分子,分子组成物质,因此,我们也把工业化时代称作是物质的时代;那我们为什么要把信息化时代称作是比特时代呢?在这里,我们有必要先解释一下什么是比特:比特是电脑中最小的一个计数单位;当我们把英文的任意一个字母输入电脑时,这个字母就占了一个字节,字节是由比特组成的。汉字比较复杂,当我们向电脑输入一个汉字时,这个汉字就占了两个字节。因此,我们不担把信息化称作是比特的时代,有时也把它称作是数字化生存的时代。

要了解“数字化生存”的价值和影响,最好的办法就是思考“比特”和“原子”的差异。
虽然我们毫无疑问地生活在信息时代,但大多数信息却是以原子的形式散发的,如报纸、杂志和书籍(像这本书)。
我们的经济也许正在向信息经济转移,但在衡量贸易规模和记录财政收支时,我们脑海里浮现的仍然是一大堆原子。
关贸总协定(GATT,GeneralAgreementonTariffsTrade)是完全围绕原子而展开的。
最近,我参观了一家公司的总部,这家公司是美国最大的集成电路(integratedcircuit)制造商之一。
在前台办理登记的时候,接待员问我有没有随身携带膝上型电脑(laptop)。
我当然带了一部。
于是,她问我这部电脑的机型、序号和价值都是怎样的。
“大约值100万到200万美元吧!”
我说。
她回答:“不,先生,那是不可能的。
你到底在说什么呀?让我瞧瞧。”
我让她看了我的旧“强力笔记本”(Power-Book)电脑,她估计价值大约在2000美元左右。
她写下了这个数字,然后才让我进去。
问题的关键是,原子不会值那么多钱,而比特却几乎是无价之宝。
不久前,我在加拿大不列颠哥伦比亚省的温哥华(Vancouver)参加了一次宝丽金公司(Po1yGram)高级经理人员的管理研习会。
这次会议的目的是促进高级经理人员之间的沟通,同时让大家对公司未来一年的计划有一个整体概念,因此展示了许多即将发行的音乐作品、电影、电子游戏和摇滚乐录像带。
他们委托联邦快递公司(FederaIExpress)把这批封装好、有重:量、占体积的CD盘、录像带(videocassette)和只读光盘(CD)送到会场来。
不幸的是,部分包裹被海关口了下来。
信息高速公路的含义就是一光速在全球传输没有重量的比特。
当一个个产业揽镜自问“我在数字化世界中有什么前途”时,其实,它们的前途百分之百要看它们的产品或服务能不能转化为数字形式。
如果你制造的是开司米羊毛衫或是中国食品,那么要把产品转换成比特,就还有很长的路要走。
要像《星际旅行》(StarTrek)的剧中人一般,随时化为光束消逝,虽然令人神往,但恐怕几百年内部不可能实现。
因此,你还是得靠联邦快递、自行车或步行,把原子从一地送往另一地。
这并不是说,在以原子为基础的行业中,数字技术在设计、制造、营销和管理方面,都将毫无用武之地。
我只不过是说,这些行业的核心特点不会改变,而且其产品中的原子也不会转换成比特。
在信息和娱乐业中,比特和原子常常被混为一谈。
书籍出版商到底属于信息传输业(传送比特),还是制造业(制造原子)呢?过去的答案是两者兼跨,但是当信息装置越来越普遍而易于使用时,这一切将很快得到改变。
现在信息装置还很难(尽管不是不可能)和一本书的品质竞争。
书籍不仅印刷清晰,而且重量轻、容易翻阅,价钱也不是太、贵。
但是,要把书籍送到你的手中,却必须经过运输和储存等种种环节。
拿教科书来说,成本中的45%是库存、运输和退货的成本。
更糟的是,印刷的书籍可能会绝版(outofprini)。
数字化的电子书却永远不会这样,它们始终存在。
其他媒介面临的风险和机会更是近在眼前。
第一批被比特取代的娱乐原子将是录像带出租点中的录像带。
租借录像带有一点很不方便,就是消费者必须归还这些原子,如果你把它们随手一塞忘了归还,还得付罚款(美国录像带出租业120亿美元的营业额中,据说有30亿来自罚款)。
由于数字化产品本身的方便性、经济上的强制驱动和管制解除等因素的共同作用,其他媒体也会迈向数字化,而且其速度将会很快。
比特究竟是什么?比特没有颜色、尺寸或重量,能以光速传播。
它就好比人体内的DNA一样,是信息的最小单位。
比特是一种存在(being)的状态:开或关,真或伪,上或下,入或出,黑或白。
出于实用目的,我们把比特想成“1”或“0”。
1和0的意义要分开来谈。
在早期的计算中,一串比特通常代表的是数字信息(numer-ica1informadon)。
假如你数数的时候,跳过所有不含1和0的数字,得出的结果会是:1,10,11,100,101,110,111,等等。
这些数字在二进制中代表了1,2,3,4,5,6,7等数字。
比特一向是数字化计算中的基本粒子,但在过去25年中,我们极大地扩展了二进制的语汇,使它包含了大量数字以外的东西。
越来越多的信息,如声音和影像,都被数字化了,被简化为同样的1和0。
把一个信号数字化,意味着从这个信号中取样。
如果我们把这些样本紧密地排列起来,几乎能让原状完全重现。
例如,在一张音乐光盘中,声音的取样是每秒44100次,声波的波形(waveform,声压的度数,可以像电压一样衡量)被记录成为不连贯的数字(这些数字被转换为比特)。
当比特串以每秒44100次的速度重现时,能以连续音重新奏出原本的音乐。
由于这些分别取样的连续音节之间间隔极短,因此在我们耳中听不出一段段分隔的音阶,而完全是连续的曲调。
黑白照片的情况也如出一辙。
你只要把电子照相机的道理想成是在一个影像上打出精密的格子(grid),然后记录每个格子的灰度就可以了。
假定我们把全黑的值设为1,全白的值设为255,那么任何明暗度的灰色都会介于这两者之间。
而由8个比特组成的二进制位组(称为一个字节,即byte)就正好有256种排列“1”和“0”的方式,也就是从 到11111111。
用这种严密的格子和细致的明暗度层次,你可以完美地复制出肉眼难辨真伪的图像。
但是,假如你采用的格子比较粗糙,或是明暗度的层次不够精细,那么你就会看到数字化的斧凿痕迹,也就是依稀可见的轮廓线条和斑驳的颗粒。
从个别的像素(pixel)中产生连续图像的道理,和我们所熟悉的物质世界的现象非常类似,只不过其过程更为精细而已。
物质是由原子组成的,但是假如你从亚原子(subatomic)的层次来观察经过处理的光滑的金属表面,那么你会看到许多坑洞。
我们眼中的金属所以光滑而坚实,只不过是因为其组成部分非常微小。
数字化产物也是如此。
但是,我们在日常生活中所体验的世界其实是非常“模拟化”(analog)的。
从宏观的角度看,这个世界一点也不数字化,反而具有连续性的特点,不会骤然开关、由黑而白、或是不经过渡就从一种状态直接跳入另一种状态。
从微观的角度看也许不是这么回事,因为和我们相互作用的物体(电线中流动的电子或我们眼中的光子)都是相互分离的单位。
但是,由于它们的数量太过庞大,因此,感觉上似乎连续不断。
这本书就差不多包含了1 个原子(书籍是一种极其模拟化的媒体)。
数字化的好处很多。
最明显的就是数据压缩(datacomparession)和纠正错误(errorcorrection)的功能,如果是在非常昂贵或杂音充斥的信道(channel)上传递信息,这两个功能就显得更加重要了。
例如,有了这样的功能,电视广播业就可以省下一大笔钱,而观众也可以收到高品质的画面和声音。
但是,我们逐渐发现,数字化所造成的影响远比这些重要得多。
当我们使用比特来描述声音和影像时,就和节约能源的道理一样,用到的比特数目当然是越少越好。
但是,每秒或每平方英寸所用到的比特数,会直接影响到音乐或影像的逼真程度(fide1ity)。
通常,我们都希望在某些应用上,采用高分辨率(reso1ution)的数字技术,而在其他的应用上,只要低分辨率的声音和画面就够了。
举例来说,我们希望用分辨率很高的数字技术印出彩色图像,但是电脑辅助的版面设计(computer一aidedpagelayout)却不需要太高的分辨率。
由此可见,比特的经济体系有一部分要受存储和传输比特的媒介所限。
在特定信道(例如铜线、无线电频谱或光纤)上每秒钟传输的比特数,就是这个信道的带宽(band-width)。
可以据此衡量每一管线能够容纳的比特数量。
这个数量或叫做容量,它必须仔细地与呈现某一特定数据(声音、音乐、影像)所需要的比特数量相匹配:对于传输高品质的声音而言,每秒64000比特已经算是相当大的数量了;每秒传输120万比特对高保真音乐(highfidelitymusic)绰绰有余;但你如果想要传送影像,则带宽就必须达到每秒传输4500万比特,这样才能产生绝佳的效果。
然而,过去15年来,我们已通过分别或同时从时间和空间的角度检视比特,并去除其固有的累赘重复的部分,掌握了压缩原始声音和画面的数字技术。
事实上,所有的媒介都得以迅速数字化,原因之一就是我们在比大多数人所预测的时间更早的时候就发展出了高水平的压缩技术。
直到1993年,还有些欧洲人辩称,数字影像的梦想要到下一个世纪才能实现。
5年前,大多数人都不相信,我们可以把每秒4500万比特的,数字影像信息,压缩到每秒120万比特。
但是,到了1995年,我们已经可以把如此庞大的数字影像信息依照这个比例压缩(compress)和解压(decompress),编码(encode)和解码(decode),而且成本低廉,品质又好。
这就好像我们突然掌握了制造意大利卡普契诺咖啡粉的诀窍,这个东西是如此美妙,只要加上热水冲泡,就可以享受到和意大利咖啡馆里的现煮咖啡同样香醇的味道。
媒体世界改头换面数字化可以让你在传送信号(signal)时,附加上纠正错误(电话杂音、无线电干扰或电视雪花)的信息。
只要在数字信号中加上几个额外的比特,并且采用日益成熟的、能因噪音和媒体的不同而相应发挥作用的纠错技术,就能去除这些干扰。
在CD光盘上,1/3的比待是用来纠正错误的。
同样的技术也可以应用到目前的电视机上,从而使每个家庭都可以接收到有演播室效果的画面,影像比现在清楚许多,以致于你可能把这种电视误以为所谓的“高清晰度电视”(high一definitionTV)。
纠正错误和压缩数据是发展数字电视(digiialteievision)最明显的两个理由。
以同样的带宽,过去只能容纳一种充满杂音的模拟电视信号,现在却可以塞入四种高品质的数字电视信号。
不仅传出去的画面品质更佳,而且利用同一频道,你还可能拥有四倍的观众数目和四倍的广告收入。
大多数的媒体管理人员在思考和论及数字化的意义时,念念不忘的正是现有的东西能以更好和更有效率的方式传播。
但如同特洛伊木马(Trojanhorse)一样,这个礼物产生的后果可能令人意想不到。
由于数字化的缘故,全新的节目内容会大量出现,新的竞争者和新的经济模式也会浮出海面,并且有可能催生出提供信息和娱乐的家庭工业。
当所有的媒体都数字化以后,由于比特毕竟还是比特,我们会观察到两个基本的然而却是立即可见的结果。
第一,比特会毫不费力地相互混合,可以同时或分别地被重复使用。
声音、图像和数据的混合被称作“多媒体”(mu1timedia),这个名词听起来很复杂,但实际上,不过是指混合的比特(commingledbits)罢了。
第二,一种新形态的比特诞生了枣这种比特会告诉你关于其他比特的事情。
它通常是一种“信息标题”(header)能说明后面的信息的内容和特征),那些经常要为每篇报道拟定“摘要标题”以表明新闻内容的报社记者最熟悉这个东西了。
学术论文的作者也很熟悉这类标题,因为学术期刊也常常要求他们为自己的论文总结要点。
在你的CD上,也可以找到简单的标题,让你能直接从一首歌跳到另一首歌,有时候,还可以从中获取关于音乐的更多的材料。
这些比特看不见,听不到,但却能够告诉你、你的电脑或上台特别的娱乐设备一些与信号相关的事情。
这两个现象,混合的比特和关于比特的比特(bits一about一bits),使媒体世界完全改观。
相较之下,像视频点播(video一on一command)和利用有线电视频道传送电子游戏之类的应用,就显得小巫见大巫了—它们不过是一座庞大冰山的小小一角。
想想看,如果电视节目改头换面成为数据,其中还包含了电脑也可以读懂的关于节目的自我描述,这将意味着什么呢?你可以不受时间和频道的限制,录下你想要的内容。
更进一步,如果这种数字化的描述能够让你在接收端任意选择节目的形式—无论是声音、影像还是文字枣那又会如何呢?如果我们能够这么轻易地移动比特,那么大媒介公司对你我来说,还有什么优势可言呢?这些都是数字化可能引发的情况。
它开创了无穷的可能性,前所未有的节目将从全新的资源组合中脱颖而出。
智慧在哪里?电视广播有一个典型的特点:所有的智慧都集中在信息传输的起始点。
它代表着一种类型的媒介。
信息传播者决定一切,接收者只能接到什么算什么。
事实上,就每一立方英寸的功用来看,目前电视机可能是你家中最笨的电器(我还没把电视节目包括在内)。
你的微波炉都可能比电视拥有更多的微处理器。
与其想象未来的电视会有更高的分辨率,更鲜艳的色彩,或能接收更多的节目,还不如把它看成智慧分布上的一场变迁—或者,说得更准确一些,就是把部分智慧从传播者那端,转移到接收者这端。
就报纸而言,传输者也同样掌握了所有的智慧。
但是大报却或多或少地避免了信息单一化的问题,因为不同的人在不同的时间,可以用不同的方式来读报。
我们一页页地例览、翻阅报纸,由不同的标题和照片引导,尽管报社把相同的比特传送给成千上万的读者,但每个人的阅读体验却大相径庭。
要探讨数字化的大未来,其中一个办法,就是看媒体的本质能不能相互转换。
看电视的体验能不能更接近读报的体验?许多人党得报纸新闻要比电视报道更有深度。
这是必然的吗?同样地,人们认为看电视比读报能够获得更为丰富的感宫体验。
一定如此吗?答案要看我们能不能开发出能力我们过滤、分拣、排列和管理多媒体的电脑,这种电脑将为人们读报,看电视,而且还能应人们的要求,担任编辑的工作。
这种智慧可以存在于传输者和接收者两端。
当智慧藏身于传输者这端时,你就好像自己聘请了一位专门撰稿人—就好比《纽约时报》根据你的兴趣,为你度身订制报纸。
在这种情况下,信息传输者会特别为你筛选出一组比特,经过过滤、处理之后传送给你,你可能会在家中将其打印出来,也可能选择以更加互动的方式在电子屏幕上观看。
另一种情况则是在接收者一端设置新闻编辑系统,《纽约时报》先发送出大量的比特,可能包括5000篇不同的文章,你的电子装置再根据你的兴趣、习惯或当天的计划,从中撷取你想要的部分。
在这个例子中,智慧存在于接收者这端,而传输者一视同仁,把所有的比特传送给所有的人。
未来将不会是二者只择其一,而是二者并存。
比特世界中的巴别城

比特还原论特别衷情于这样一幅动人的图景:比特的流动是没有国界的,它可以绕过海
关检查到达世界任何地方。许多人把这理解为,信息的传递可以超越传统的地域和文化边
界,它可以为所有的人共享。我们的世界由于有了比特变成了名副其实的地球村。
地球村的说法使我想起《老子》六十六章中所提到那个世界:邻国相望,鸡犬之声相
闻,使民至老死,不相往来。我们如今似乎就生活在这样的世界:不同国家的网络居民通过
与网络连接的电子屏幕看到其他国家,听到从那边传来的声音。当然,人们因为不必步行,
所以就可以老死不相往来。
然而,这样的地球村还没有完全变成现实。我们当然无法辨别世界各地的鸡鸣犬吠声是
否也有不同的方言,但却知道不同国家或民族的人群具有完全不同的自然语言。网络居民是
靠显示器上出现的各种文字、图象--而不是比特串--来发出或接收信息的。这些文字的输入
者或读者显然属于不同的国家。如果你高兴的话,就可以到美国白宫或巴黎的卢浮宫去走一
趟。这是许多网络读物津津乐道的事。问题在于,如果你不通英语(更不用说法语了),不
知道白宫是Whitehouse,卢浮宫是Louvre,那怎么去呢?
当然,你可以打听到它们的网络地址:http://www.whitehouse.gov(白宫)
http://www.paris.org./Musees/Louvre/(卢浮宫)然而,即使你到了那里,也发现这
里没有中文服务。这样你就只能像刘姥姥进大观园一样,对着满屏幕的洋码望洋兴叹了。我
们很难说这些洋文没有携带着信息,但对于不认识它的人,它的确没有信息量!《圣经·创
世纪》第11章有一段我们十分熟悉的传说:
最初天下的人都说同一种语言。他们说:让我们在城中建一个高耸入云的塔。不料这件
事惊动了上帝,他说:看哪,这些人都说同样的语言,如果让他们建起这塔,他们还有什么
事做不成呢?于是他悄悄地打乱了这些人的语言,使他们无法合作建塔了。从此这个城就叫
巴别城。巴别的含义就是变乱语言,也就是信息无法沟通的意思。我们的现实世界是一个巨
大的巴别城,今天的网络也仍然如此!
我有一位姓郭的朋友,电脑玩得出神入化。当一位大学生向他讨教秘诀时,他淡淡一笑
说:先学5年英语,再学10年哲学。这个建议虚虚实实,但并非全是笑谈:学10年哲学,
是要让人变得明白,而学5年英语,则是要让人具有起码的上机和上网资格。在任何国家,
外语都在一定意义上反映着一个人所受教育的程度。当外语成为我们上机和上网的必要条件
时,电脑和网络市场的客户就只能是那些受过相当教育的人群,换句话说,目前网络世界的
人口与世界人口还是两个概念。
由此我们可以检验一下关于网络市场前景的说法。一本关于网络的著名畅销书写道:现
在几乎平均每10分钟就有一个人加入到交互网络里,照这个速度发展,在2003年,全世界
的人口都会成为网络用户。
……就算那时全世界有一半的人(30亿)参加了交互网络,那也是个可怕的数字。在
不到10年期间会有30亿人上网!这实在不可思议。且不说世界上那三分之二受苦人,单就
中国而言,目前文盲人数占人口数1/5强,受过高等教育的人不足4%,熟悉外语的人比例
更低,除了极少数天才外,几乎百分之百的人不能通晓两三种以上的外语。怎么能指望这些
人都在10年内成为互联网用户呢?巧得很,不久前我看到一则报道,声称现在世界上平均
每10秒钟就有一个人患肺癌。我大惑不解:怎么可能?如果说每10分钟一个人上网,到
2003年上网人数将达60亿,那么每10秒钟一人患肺癌,几年之内世界上的人岂不要死光了?
于是我自己作了一回计算,发现上述关于上网人数的断言产生于一个可怕的计算错误
(或者作者根本就没有计算!):每10分钟一个人上网,到2003年上网人数最多也就是
52万人!它还不到目前全球人口的1/1000!让我们还是参考一个比较专业的估计:目前
Internet在全球有5万个网址,几千万用户。估计到2000年会有100万个网址,5亿用
户。我相信,这个数字也有相当的理想化色彩,而且这些用户恐怕大部分集中在发达国家和
英语世界。
英国哲学家维特根斯坦说过:语言的界限就是世界的界限。德国人海德格尔也表达过类
似的意思:语言是存在的家。这些说法即使从常识上看也包含着很大的真实性。网络上的英
语、法语、德语、汉语界面就是不同国家的国界,人们就居住在各自的语言世界中。我们在
上网时只能从自己熟悉的语言世界中获得信息。因此,尽管比特可以在有网络的地方畅通无
阻,但不同民族的语言却把这个地球村分割成了不同的世界。这就是网络世界的现状!当
然,科技的问题只有靠科技来解决。现在国内软件公司正在大力开发汉语软件和信息产品。
即使远在太平洋彼岸的美国微软公司为了打入和垄断中国市场也开发出了功能相当齐全的汉
语软件。
因此,人们期待着网络这种信息交流载体在不远的将来进入每一个家庭,进而替代电视
和报刊。
然而我们不应忘记,计算机互联网与现有的广播、电视和报刊传媒有一个很大的不同:
电视的传播方式是你说我看,报刊则是你写我读,这里并不存在交流问题。而互联网则是双
向交流的媒体,在目前情况下,它的交流模式是既写又看,这对于许多有书写障碍的人仍然
是一件不轻松的事。打破民族语言之间的屏障,打破只能写不能说的局面,这就是现代信息
技术专家们的理想。机器翻译、语音合成、提高图像传输速度、强化电子屏幕对人体器官发
出的信息的感应灵敏度和分辨度,这一切技术都是为了使电脑以及网络那端的人成为你的对
话伙伴,使电脑开口说出你能懂的语言并看懂或听懂你的指令。只有到那个时候,电脑和网
络才能真正进入每一个家庭,地球村才可能成为现实。

参考:
段永朝:工具化、神圣化与脆弱的比特世界(上):
http://column.bokee.com/12331.html
段永朝:工具化、神圣化与脆弱的比特世界(下):
http://www.sunbo.com/misc.php?xname=A8QJCV0&dname=1F8QP11&xpos=358&op=print

克隆技术是什么?

关于克隆的资料
克隆是英文clone的音译,简单讲就是一种人工诱导的无性繁殖方式。但克隆与无性繁殖是不同的。无性繁殖是指不经过雌雄两性生殖细胞的结合、只由一个生物体产生后代的生殖方式,常见的有孢子生殖、出芽生殖和分裂生殖。由植物的根、茎、叶等经过压条或嫁接等方式产生新个体也叫无性繁殖。绵羊、猴子和牛等动物没有人工操作是不能进行无性繁殖的。科学家把人工遗传操作动物繁殖的过程叫克隆,这门生物技术叫克隆技术。
克隆的基本过程是先将含有遗传物质的供体细胞的核移植到去除了细胞核的卵细胞中,利用微电流刺激等使两者融合为一体,然后促使这一新细胞分裂繁殖发育成胚胎,当胚胎发育到一定程度后,再被植入动物子宫中使动物怀孕,便可产下与提供细胞者基因相同的动物。这一过程中如果对供体细胞进行基因改造,那么无性繁殖的动物后代基因就会发生相同的变化。

克隆技术不需要雌雄交配,不需要精子和卵子的结合,只需从动物身上提取一个单细胞,用人工的方法将其培养成胚胎,再将胚胎植入雌性动物体内,就可孕育出新的个体。这种以单细胞培养出来的克隆动物,具有与单细胞供体完全相同的特征,是单细胞供体的“复制品”。英国英格兰科学家和美国俄勒冈科学家先后培养出了“克隆羊”和“克隆猴”。克隆技术的成功,被人们称为“历史性的事件,科学的创举”。有人甚至认为,克隆技术可以同当年原子弹的问世相提并论。

克隆技术可以用来生产“克隆人”,可以用来“复制”人,因而引起了全世界的广泛关注。对人类来说,克隆技术是悲是喜,是祸是福?唯物辩证法认为,世界上的任何事物都是矛盾的统一体,都是一分为二的。克隆技术也是这样。如果克隆技术被用于“复制”像希特勒之类的战争狂人,那会给人类社会带来什么呢?即使是用于“复制”普通的人,也会带来一系列的伦理道德问题。如果把克隆技术应用于畜牧业生产,将会使优良牲畜品种的培育与繁殖发生根本性的变革。若将克隆技术用于基因治疗的研究,就极有可能攻克那些危及人类生命健康的癌症、艾滋病等顽疾。克隆技术犹如原子能技术,是一把双刃剑,剑柄掌握在人类手中。人类应该采取联合行动,避免“克隆人”的出现,使克隆技术造福于人类社会。

克隆技术研究现状
一、克隆的早期研究
克隆一词是英文单词clone的音译,作为名词,c1one通常被意译为无性繁殖系。同一克隆内所有成员的遗传构成是完全相同的,例外仅见于有突变发生时。自然界早已存在天然植物、动物和微生物的克隆,例如:同卵双胞胎实际上就是一种克隆。然而,天然的哺乳动物克隆的发生率极低,成员数目太少(一般为两个),且缺乏目的性,所以很少能够被用来为人类造福,因此,人们开始探索用人工的方法来生产高等动物克隆。这样,克隆一词就开始被用作动词,指人工培育克隆动物这一动作。

目前,生产哺乳动物克隆的方法主要有胚胎分割和细胞核移植两种。克隆羊“多莉”,以及其后各国科学家培育的各种克隆动物,采用的都是细胞核移植技术。所谓细胞核移植,是指将不同发育时期的胚胎或成体动物的细胞核,经显微手术和细胞融合方法移植到去核卵母细胞中,重新组成胚胎并使之发育成熟的过程。与胚胎分割技术不同,细胞核移植技术,特别是细胞核连续移植技术可以产生无限个遗传相同的个体。由于细胞核移植是产生克隆动物的有效方法,故人们往往把它称为动物克隆技术。

采用细胞核移植技术克隆动物的设想,最初由汉斯·施佩曼在1938年提出,他称之为“奇异的实验”,即从发育到后期的胚胎(成熟或未成熟的胚胎均可)中取出细胞核,将其移植到一个卵子中。这一设想是现在克隆动物的基本途径。

从1952年起,科学家们首先采用青蛙开展细胞核移植克隆实验,先后获得了蝌蚪和成体蛙。1963年,我国童第周教授领导的科研组,首先以金鱼等为材料,研究了鱼类胚胎细胞核移植技术,获得成功。

哺乳动物胚胎细胞核移植研究的最初成果在1981年取得——卡尔·伊尔门泽和彼得·霍佩用鼠胚胎细胞培育出发育正常的小鼠。1984年,施特恩·维拉德森用取自羊的未成熟胚胎细胞克隆出一只活产羊,其他人后来利用牛、猪、山羊、兔和猕猴等各种动物对他采用的实验方法进行了重复实验。1989年,维拉德森获得连续移核二代的克隆牛。1994年,尼尔·菲尔斯特用发育到至少有120个细胞的晚期胚胎克隆牛。到1995年,在主要的哺乳动物中,胚胎细胞核移植都获得成功,包括冷冻和体外生产的胚胎;对胚胎干细胞或成体干细胞的核移植实验,也都做了尝试。但到1995年为止,成体动物已分化细胞核移植一直未能取得成功。

二、克隆羊“多莉”的意义和引起的反响
以上事实说明,在1997年2月英国罗斯林研究所维尔穆特博士科研组公布体细胞克隆羊“多莉”培育成功之前,胚胎细胞核移植技术已经有了很大的发展。实际上,“多莉”的克隆在核移植技术上沿袭了胚胎细胞核移植的全部过程,但这并不能减低“多莉”的重大意义,因为它是世界上第一例经体细胞核移植出生的动物,是克隆技术领域研究的巨大突破。这一巨大进展意味着:在理论上证明了,同植物细胞一样,分化了的动物细胞核也具有全能性,在分化过程中细胞核中的遗传物质没有不可逆变化;在实践上证明了,利用体细胞进行动物克隆的技术是可行的,将有无数相同的细胞可用来作为供体进行核移植,并且在与卵细胞相融合前可对这些供体细胞进行一系列复杂的遗传操作,从而为大规模复制动物优良品种和生产转基因动物提供了有效方法。

在理论上,利用同样方法,人可以复制“克隆人”,这意味着以往科幻小说中的独裁狂人克隆自己的想法是完全可以实现的。因此,“多莉”的诞生在世界各国科学界、政界乃至宗教界都引起了强烈反响,并引发了一场由克隆人所衍生的道德问题的讨论。各国政府有关人士、民间纷纷作出反应:克隆人类有悖于伦理道德。尽管如此,克隆技术的巨大理论意义和实用价值促使科学家们加快了研究的步伐,从而使动物克隆技术的研究与开发进入一个高潮。

三、近3年来克隆研究的重要成果
克隆羊“多莉”的诞生在全世界掀起了克隆研究热潮,随后,有关克隆动物的报道接连不断。1997年3月,即“多莉”诞生后1个月,美国、中国台湾和澳大利亚科学家分别发表了他们成功克隆猴子、猪和牛的消息。不过,他们都是采用胚胎细胞进行克隆,其意义不能与“多莉”相比。同年7月,罗斯林研究所和PPL公司宣布用基因改造过的胎儿成纤维细胞克隆出世界上第一头带有人类基因的转基因绵羊“波莉”(Polly)。这一成果显示了克隆技术在培育转基因动物方面的巨大应用价值。

1998年7月,美国夏威夷大学Wakayama等报道,由小鼠卵丘细胞克隆了27只成活小鼠,其中7只是由克隆小鼠再次克隆的后代,这是继“多莉”以后的第二批哺乳动物体细胞核移植后代。此外,Wakayama等人采用了与“多莉”不同的、新的、相对简单的且成功率较高的克隆技术,这一技术以该大学所在地而命名为“檀香山技术”。

此后,美国、法国、荷兰和韩国等国科学家也相继报道了体细胞克隆牛成功的消息;日本科学家的研究热情尤为惊人,1998年7月至1999年4月,东京农业大学、近畿大学、家畜改良事业团、地方(石川县、大分县和鹿儿岛县等)家畜试验场以及民间企业(如日本最大的奶商品公司雪印乳业等)纷纷报道了,他们采用牛耳部、臀部肌肉、卵丘细胞以及初乳中提取的乳腺细胞克隆牛的成果。至1999年底,全世界已有6种类型细胞——胎儿成纤维细胞、乳腺细胞、卵丘细胞、输卵管/子宫上皮细胞、肌肉细胞和耳部皮肤细胞的体细胞克隆后代成功诞生。

2000年6月,中国西北农林科技大学利用成年山羊体细胞克隆出两只“克隆羊”,但其中一只因呼吸系统发育不良而早夭。据介绍,所采用的克隆技术为该研究组自己研究所得,与克隆“多莉”的技术完全不同,这表明我国科学家也掌握了体细胞克隆的尖端技术。

在不同种间进行细胞核移植实验也取得了一些可喜成果,1998年1月,美国威斯康星一麦迪逊大学的科学家们以牛的卵子为受体,成功克隆出猪、牛、羊、鼠和猕猴五种哺乳动物的胚胎,这一研究结果表明,某个物种的未受精卵可以同取自多种动物的成熟细胞核相结合。虽然这些胚胎都流产了,但它对异种克隆的可能性作了有益的尝试。1999年,美国科学家用牛卵子克隆出珍稀动物盘羊的胚胎;我国科学家也用兔卵子克隆了大熊猫的早期胚胎,这些成果说明克隆技术有可能成为保护和拯救濒危动物的一条新途径。

四、克隆技术的应用前景
克隆技术已展示出广阔的应用前景,概括起来大致有以下四个方面:(1)培育优良畜种和生产实验动物;(2)生产转基因动物;(3)生产人胚胎干细胞用于细胞和组织替代疗法;(4)复制濒危的动物物种,保存和传播动物物种资源。以下就生产转基因动物和胚胎干细胞作简要说明。

转基因动物研究是动物生物工程领域中最诱人和最有发展前景的课题之一,转基因动物可作为医用器官移植的供体、作为生物反应器,以及用于家畜遗传改良、创建疾病实验模型等。但目前转基因动物的实际应用并不多,除单一基因修饰的转基因小鼠医学模型较早得到应用外,转基因动物乳腺生物反应器生产药物蛋白的研究时间较长,已进行了10多年,但目前在全世界范围内仅有2例药品进入3期临床试验,5~6个药品进入2期临床试验;而其农艺性状发生改良、可资畜牧生产应用的转基因家畜品系至今没有诞生。转基因动物制作效率低、定点整合困难所导致的成本过高和调控失灵,以及转基因动物有性繁殖后代遗传性状出现分离、难以保持始祖的优良胜状,是制约当今转基因动物实用化进程的主要原因。

体细胞克隆的成功为转基因动物生产掀起一场新的革命,动物体细胞克隆技术为迅速放大转基因动物所产生的种质创新效果提供了技术可能。采用简便的体细胞转染技术实施目标基因的转移,可以避免家畜生殖细胞来源困难和低效率。同时,采用转基因体细胞系,可以在实验室条件下进行转基因整合预检和性别预选。在核移植前,先把目的外源基因和标记基因(如LagZ基因和新霉素抗生基因)的融合基因导入培养的体细胞中,再通过标记基因的表现来筛选转基因阳性细胞及其克隆,然后把此阳性细胞的核移植到去核卵母细胞中,最后生产出的动物在理论上应是100%的阳性转基因动物。采用此法,Schnieke等(Bio Report,1997)已成功获得6只转基因绵羊,其中3只带有人凝血因子IX基因和标记基因(新霉素抗性基因),3只带有标记基因,目的外源基因整合率高达50%。Cibelli(Science,1997)同样利用核移植法获得3头转基因牛,证实了该法的有效性。由此可以看出,当今动物克隆技术最重要的应用方向之一,就是高附加值转基因克隆动物的研究开发。

胚胎干细胞(ES)是具有形成所有成年细胞类型潜力的全能干细胞。科学家们一直试图诱导各种干细胞定向分化为特定的组织类型,来替代那些受损的体内组织,比如把产生胰岛素的细胞植入糖尿病患者体内。科学家们已经能够使猪ES细胞转变为跳动的心肌细胞,使人ES细胞生成神经细胞和间充质细胞和使小鼠ES细胞分化为内胚层细胞。这些结果为细胞和组织替代疗法开辟了道路。目前,科学家已成功分离到人ES细胞(Thomson等1998,Science),而体细胞克隆技术为生产患者自身的ES细胞提供了可能。把患者体细胞移植到去核卵母细胞中形成重组胚,把重组胚体外培养到囊胚,然后从囊胚内分离出ES细胞,获得的ES细胞使之定向分化为所需的特定细胞类型(如神经细胞,肌肉细胞和血细胞),用于替代疗法。这种核移植法的最终目的是用于干细胞治疗,而非得到克隆个体,科学家们称之为“治疗克隆”。

克隆技术在基础研究中的应用也是很有意义的,它为研究配子和胚胎发生,细胞和组织分化,基因表达调控,核质互作等机理提供了工具。

五、克隆技术存在的问题
尽管克隆技术有着广泛的应用前景,但离产业化尚有很大距离。因为作为一个新兴的研究领域,克隆技术在理论和技术上都还很不成熟,在理论上,分化的体细胞克隆对遗传物质重编(细胞核内所有或大部分基因关闭,细胞重新恢复全能性的过程)的机理还不清楚;克隆动物是否会记住供体细胞的年龄,克隆动物的连续后代是否会累积突变基因,以及在克隆过程中胞质线粒体所起的遗传作用等问题还没有解决。

在实践中,克隆动物的成功率还很低,维尔穆特研究组在培育“多莉“的实验中,融合了277枚移植核的卵细胞,仅获得了“多莉”这一只成活羔羊,成功率只有0.36%,同时进行的胎儿成纤维细胞和胚胎细胞的克隆实验的成功率也分别只有1.7%和1.1%,即使是使用“檀香山”技术,以分化程度较低的卵丘细胞为核供体,其成功率也只有百分之几。

此外,生出的部分个体表现出生理或免疫缺限。以克隆牛为例,日本、法国等国培育的许多克隆牛在降生后两个月内死去;到2000年2月,日本全国已共有121头体细胞克隆牛诞生,但存活的只有64头。观察结果表明,部分犊牛胎盘功能不完善,其血液中含氧量及生长因子的浓度都低于正常水平;有些牛犊的胸腺、脾和淋巴腺未得到正常发育;克隆动物胎儿普遍存在比一般动物发育快的倾向,这些都可能是死亡的原因。

即使是正常发育的“多莉”,也被发现有早衰迹象。染色体的未端被称为端粒,它决定着细胞能够分裂的次数:每一次分裂端粒都会缩短,而当端粒耗尽后细胞就失去了分裂能力。1998年,科学家发现“多莉”的细胞端粒比正常的要短,即其细胞处于更衰老的状态。当时认为,这可能是用成年绵羊的细胞克隆“多莉”造成的,使其细胞具有成年细胞的印记,但这一解释目前受到了挑战,美国马萨诸塞州的医生罗伯特·兰扎等用培养的衰老细胞克隆牛,得到6头小牛,出生5~10个月后发现这些克隆牛的端粒比普通同龄小牛要长,有的甚至比普通新生小牛的端粒还长。现在还不清楚这一现象的原因,也不清楚为何与“多莉“的情况有巨大差别。但这一实验说明,在一些情况下克隆过程能改变成熟细胞的分子钟,使其“恢复青春”,关于这种变化对克隆动物寿命的影响,还有待于进一步观察。

除了以上的理论和技术障碍外,克隆技术(尤其是在人胚胎方面的应用)对伦理道德的冲击和公众对此的强烈反应也限制了克隆技术的应用。但几年来克隆技术的发展表明,世界各科技大国都不甘落后,谁也没有放弃克隆技术研究。这一点上英国政府的态度非常具有代表性,在1997年2月底宣布中止对“多莉”研究小组投资后不到1个月,英国科技委员会就对克隆技术发表专题报告,表明英国政府将重新考虑这一决定,认为盲目禁止这方面的研究并不是明智之举,关键在于建立一定的规范利用它为人类造福。
回答者:督☆督 - 试用期 一级 3-7 20:59

一、克隆的概念
众所周知,生物的繁衍是通过生殖完成的。生物的繁殖有两种方式:一种叫有性生殖,一种叫无性生殖。
有性生殖是通过两性生殖细胞 ( 精子和卵子 ) 的融合,并发育形成后代的生殖方式。无性生殖则不经过两性生殖细胞的结合,而是由生物体自身的分裂生殖或其体细胞生长发育形成个体。无性生殖多见于植物与某些动物 ( 如单细胞动物与低等动物 ) 。
克隆是英文“ clone ”的音译,来自希腊文 klon , 原意为苗或嫩枝,指以无性生殖或营养生殖的一些植物。随着时间的推移和科学的发展,它的含义增加了许多内容,如一个细胞在体外培养下产生的一群细胞;由“亲本”序列产生的 DNA 序列等等。概言之, 克隆是指由一个细胞或个体,通过无性繁殖手段,获得遗传上相同的细胞群或个体群。
我国古典名著《西游记》里的孙悟空,只要拔撮毫毛吹口仙气,就能“变”出许多孙悟空。因为拔一撮毫毛必须带下一群细胞,这一群细胞就能培养出一群相同的孙大圣。这也归属于无性生殖。只不过孙大圣本领高强,能在瞬间“克隆”出千百个自己而已。简而言之,克隆就是无性生殖,就是“复制”、“翻版”。
二、植物的克隆
无性生殖 ( 克隆 ) 本来是一种低级的生殖方式。生物进化的层次越低,越有可能采取这种生殖方式,进化层次越高,则越不可能采取这种生殖方式。由于低级生物,如微生物,采取自行分裂的方法繁殖,分裂后子代与亲代的遗传物质完全一样,因此在这个意义上微生物没有“个体”,它们也没有死亡。虽然在严格的意义上,微生物的亲代与子代仍然会有若干差异,因为它们的外界营养环境仍然会有差异,但从高等动物的角度看,这种差异似乎太微不足道了。在这种差异可以不计的条件下,人们可以说,对微生物来说,它们是不死的。死亡是生物进化到较高阶段的产物。现在生物医学研究中用克隆技术在体外培养的正常细胞或癌细胞,也称为“永生细胞株”,意思也是说这些细胞是“不死的”。
生物医学研究进入微观层次,运用克隆技术来培养正常或异常细胞的永生细胞株,虽然是一件难度很大的工作,但已经在各国的科学界和医学界越来越得到重视。在农业上,人们早已用插枝、压条等方法,来繁殖适合于人类需要的植物。在畜牧业上,各国都在进行用克隆技术产生更多良种动物的研究。但从高等生物成体的体细胞中发育出一个成体,这是克隆技术的一个重大发展。
早在许多年前,美国康奈尔大学研究人员将成熟的胡萝卜高速搅拌,获得单个胡萝卜细胞,然后将这些单个细胞置于生长培养基中,培养出遗传上完全一样的胡萝卜。这个试验证实了植物细胞全能性学说。所谓植物细胞全能性学说是指植物体的每一个细胞,包括体细胞,都具有发育成完整个体的潜能。
植物细胞全能性学说在植物界已经得到广泛的证明。现在我们可以植物体的任何一种活的细胞、组织、器官,经过体外人工培养获得它的完整植株,并产生许多植物。这种技术被称为组织培养。它已用于工厂化生产花卉、作物 ( 如甘蔗 ) 的试管苗。
三、动物克隆的历程
关于动物的无性生殖研究,一直是科学家探索的课题。因为人类通过有性生殖的方法,选育家畜品种已有上千年的历史,结果是产生了一些优良的个体或群体。它们比一般的个体更能满足人们的需要和愿望。譬如,一头产奶量特别高的奶牛,一群毛产量多的绵羊,一匹得奖的赛马或一只优秀的警犬。可是,有性生殖的后代,其性能不一定都同亲代一样,有的甚至不如亲代。究其原因,因为卵子或精子只携带构成亲代的、任意一半的等位基因,而等位基因几乎可以有无限的组合,因而会产生不同的后代。兄弟、姊妹、兄妹、姊弟之间都有很大的差异,便是因为极难有完全相同的基因型。
所以通过有性生殖保持一种表现型是非常困难的。如果获得一种理想的表现型如产奶量高的奶牛,再通过无性生殖保持、扩大和繁殖这种表现型,即生产许多遗传上相同的个体,从经济角度讲显然是很有价值的。
⒈卵细胞培养成成体
1951 ~ 1959 年,我国著名细胞生物学家朱冼等,用直径 10 ~ 13um 的玻璃针刺激去卵膜的蟾蜍卵细胞,在世界上首次培养出 25 只蟾蜍成体,即没有父亲的癞蛤蟆。它们最长的可活 8 个月。
在上述试验中用的是生殖细胞。体细胞能否通过培养获得动物体呢?即植物细胞具有的全能性,动物细胞是否也具有?每个动物细胞,包括体细胞都具有该物种的全套基因是不容怀疑的,但从体细胞直接培养成动物成体至今尚未成功。为了证明动物细胞也具有全能性,生物学家进行了大量的细胞核移植试验。
⒉细胞核移植试验
1939 年,科学家首次在变形虫中进行核移植试验。他们将核移到同种去核变形虫中,结果重组的变形虫可生长,并繁殖后代。
1963 年起,我国著名生物学家童第周等进行了大量的鱼类核移植试验。其中 1980 年,他们将鲤鱼囊胚期细胞核作供体核,鲫鱼的未受精去核成熟卵细胞作受体质, 2.7% 的移核卵发育到成鱼。鲤鲫移核鱼的主要性状与鲤鱼相同,但脊椎骨的数目与鲫鱼相同,而侧鳞的数目介于这两种鱼之间。这种细胞工程鱼生长速度比鲤鱼快 22% ,现已在生产上大面积推广。
1966 年,科学家用两栖类非洲爪蟾进行核移植试验。他们将蝌蚪的肠细胞的细胞核移入去核的卵细胞中,结果有 1.5% 的重组细胞发育成体。他们的试验第一次证明了动物的体细胞也具有全能性,但在哺乳动物体细胞中尚未证明。
⒊用胚胎细胞克隆哺乳动物
1986 年,英国科学家用绵羊的 8 细胞胚胎细胞 ( 在 8 细胞胚胎之前的细胞才能表现全能性 ) 做供核细胞,羊的卵细胞做供质细胞,结果重组细胞能发育成羊成体,此后又相继用胚胎细胞克隆出牛、鼠、兔、猴等动物。应该指出的是,该试验并非复制雄性或雌性绵羊,而是复制它们的后代,因此试验还存在一定的不足或缺陷。
在我国,用胚胎细胞克隆哺乳动物, 80 年代末已克隆出免; 1991 年西北农业大学和江苏农学院克隆出羊; 1993 年中国科学院发育研究所与扬州大学农学院克隆出山羊; 1995 年华南师大和广西农业大学克隆出牛。此外,湖南医学院还克隆出鼠。但是,用胚胎细胞以外的体细胞克隆出哺乳动物,则是由英国科学家维尔穆特开创的。
四、“多莉”的诞生
“多莉”是世界上第一例用体细胞——乳腺上皮细胞,通过细胞核移植技术,在复杂的人工操作下,得到的一只小绵羊。其操作过程是这样的:
⒈从苏格兰黑脸母羊 ( 甲羊 ) 取出卵子,并把卵子的遗传物质吸去,成为只有细胞质的卵子。
⒉从妊娠后期 3 个月的母羊 ( 乙羊 ) 取出乳腺上皮细胞, 在体外传代培养 3 — 6 代,并用药物处理控制细胞发育使之处于休止期。这是非常关键的一步。然后取休止期的细胞作为供体细胞。
⒊将一个供体细胞导入上述卵子的透明带内腔。然后用电脉冲刺激,使供体细胞和卵子融合,形成重构卵。
⒋把重构卵移植到黑脸母羊 ( 羊丙 ) 的输卵管里,此前将丙羊的输卵管结扎,使胚胎不能进入子宫。丙羊起到活体培养胚胎的作用,称为中间受体。
⒌重构卵移入丙羊输卵管内 6 天后,从输卵管冲出胚胎, 挑选正常发育到桑椹期和囊胚期的胚胎。
⒍将 1 — 3 个桑椹胚或囊胚,移植到苏格兰黑脸羊 ( 丁羊 ) 的子宫内。胚胎移植到子宫后 , 继续发育 , 最后生出“多莉”。这只母羊称为“代母”。
此项用了约 434 个卵子 , 获得 277 个重构卵 , 移植到中间受体 6 天后,冲出 247 个胚胎 , 其中发育到桑椹胚和囊胚的 29 个 (11.7%) 。把 29 个胚胎移植给 13 只代母,最后生出 1 只“多莉” , 产羔率仅为 3.4% 。若以重构卵数计算 , 产羔率低于 4 ‰。可见这一技术有待于完善。另外需要说明的是,克隆绵羊技术并没有做到完全复制,去核卵细胞的细胞质也会含有少量遗传物质,它对胚胎发育也能起重要甚至是决定性的作用。生物的遗传是细胞核和细胞质共同作用的结果。细胞质基因也是 DNA 片段 , 其载体主要是一些细胞器,如质体、线粒体等。 细胞质基因在一定程度上是独立的,一般不受核基因的干扰。与核基因相比尽管细胞核含有 99.9% 的遗传信息,但个体的性状表达仍然会受到卵细胞质的影响。因此,从理论上分析,“多莉”羊还不是完全复制品。由于“多莉”只是孤单的一个,所以有人认为,说“多莉”是一克隆动物,并不准确。虽然目前只获得 1 只“多莉”, 但它是令世人瞩目的重大科学成就。
五、克隆技术的意义及经济价值
波澜壮阔的人类历史在很大程度上是由技术推动发展的:金属制造和改良的农业使文明脱离了石器时代; 19 世纪的工业革命又导致了大机器和大城市的兴起;到了 20 世纪,物理学戴上了王冠。物理学家们劈开原子,揭示了相对论和量子理论的奇妙世界,还开发利用了小小的硅片。他们通过原子弹、晶体管、激光和微型集成电路改变了世界。现在,许多专家相信,人类已经做好了用新的科技发展浪潮迎接未来的准备。正如 1996 年诺贝尔奖获得者、美国赖斯大学的化学家罗伯特·柯尔所说:“现在是物理学和化学的世纪,但下世纪显然将是生物学的世纪。”许多科学家认为,以克隆绵羊“多莉”诞生为标志,生物学世纪已经提前到来。
克隆技术的突破,引起世人的震惊。人们担心的是人类的自我复制,而往往忽视了其他方面的应用和意义。其实,它在基础生命科学、医学、家业科学研究与生产中,具有重大的理论价值和广泛的应用前景,并存在着巨大的潜在经济效益。在未来的 5 ~ 20 年, 将逐步形成和引起一场世界范围内新的生物技术产业革命。
⒈在基础生命科学方面,由以往进行基因功能研究主要在小鼠等少数动物身上进行到现在在多种动物身上均可得到实现,这有利于更加清晰地揭示基因功能和生命的本质;提供研究哺乳动物细胞发育全能性及核质关系最有效的手段之一;还可以克隆各种濒危动物,如国宝大熊猫、金丝猴甚至白鳍豚等。
⒉在医学科学方面,可以为医学科学研究提供核基因型完全一致的实验动物,这有利于医学家研究目前尚未找到有效治疗方 法的疾病,并揭示发病机制;对其进行去分化机制的研究,有助于抗衰老及其机制的研究。
⒊在农业科学方面,可快速培育和扩繁抗病力强、生产性能高的优良动物;可以研究动物的发病机理,寻求新的有效治疗药物。
六、如何迎接“克隆时代”的挑战
克隆技术的成功,标志着“复制”哺乳动物的最后技术障碍已被突破。随之而来,在理论上复制人类已成为可能。所以,克隆技术不仅给我们带来了益处,也向人类提出了严峻的挑战。这一技术一旦应用于人类,将会对人类社会产生极其严重的后果。
⒈人类从有性生殖回到了无性生殖,

本文地址:http://www.dadaojiayuan.com/jiankang/280073.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章