登录
首页 >> 健康生活

突破性技术可精确追踪细胞中脂肪酸的位置(sn-2 plus是什么?)

佚名 2024-05-20 09:08:29

突破性技术可精确追踪细胞中脂肪酸的位置

日前,一项刊登在国际杂志the faseb journal上的研究报告中,来自大阪大学等机构的研究人员通过研究开发了一种新方法,其能够在单细胞水平下对细胞内的脂肪酸进行成像;文章中研究人员利用包含单溴原子的脂肪酸来处理细胞,随后利用扫描x射线荧光显微镜检查技术来观察细胞内脂肪酸的分子状态,这项技术能够提供较高的分辨率,同时也能够改善科学家们理解脂肪酸在细胞功能以及疾病发生过程中所扮演的角色。

脂肪酸对于细胞生长和生存非常重要,其能够为细胞提供能量并且形成细胞膜的重要组分,由于其对于细胞非常重要,因此很多生物学家对脂肪酸的功能、代谢以及破碎进行了大量的研究,但当前标准的技术很难对脂肪酸分子在细胞中的位置进行成像分析。这项研究中,研究人员就开发出了一种新技术,能够帮助理解脂肪酸分子在细胞中的动态变化以及阐明细胞如何利用脂肪酸来进行代谢,同时这种新技术并不会表现出任何细胞毒性,相比标准的成像技术而言其分辨率还较高。

研究者satoshi matsuyama说道,利用这种名为扫描x射线荧光显微镜检查的新技术,我们就能够完全看到细胞中的微量元素,这就意味着我们不再需要利用生色团来标记分子来进行追踪研究了。在细胞成像研究中将生色团吸附到生物基质中非常常见,但这些取代基往往非常巨大,而且经常会干扰细胞代谢损伤细胞的功能。

随后研究人员利用单溴原子来吸附脂肪酸,该过程并不需要非常复杂的生化反应步骤,同时研究人员利用修饰后的脂肪酸来处理细胞,溴因细胞成像而出名,而且细胞能够对含有溴的脂肪酸进行摄取并代谢。随后研究人员利用显微镜检查技术寻找脂肪酸以及其代谢衍生物在细胞中的位置,研究者所开发的新技术非常敏感,同时还具有较高的分辨率,主要能够在细胞核周围的区域检测含溴的分子,并且表现出斑点状分布。

最后研究人员kazuto yamauchi指出,脂肪酸和其代谢衍生物对于细胞功能非常重要,同时还和多种人类疾病直接相关,阐明其在细胞中的精确位置对于改善我们对脂肪酸功能的理解至关重要;下一步研究者计划利用这项最新技术来理解脂肪酸的功能,从而帮助阐明脂肪酸在机体炎症、影响心脏、血管以及神经等疾病中所扮演的关键角色。

sn-2 plus是什么?

SN-2 PLUS是一种具有独特脂肪结构的结构脂技术,是目前被公认为婴儿配方奶粉脂肪类产品发展的一款具突破性的产品,故而对婴幼儿的生长发育有促进作用。

SN-2PLUS指当甘油三酯的SN-2位置上主要是C16:0脂肪酸时,使得C16:0在SN-2位置上的百分比例更亲和均衡、更接近母乳脂肪酸比例的技术,这种技术使脂肪成分更容易被人体消化吸收,从而能够为每位宝宝提供充足的能量供应。

扩展资料:

SN-2 PLUS——最接近母乳结构新技术。0-12个月的宝宝约50%的能量由母乳脂肪直接提供,母乳脂肪中有98%是由甘油三脂和2%其他的脂肪组成,所以母乳脂肪中的甘油三脂对宝宝的成长起着非常关键的作用。

研究表明神奇的SN-2 PLUS能减少宝宝约70%的哭闹,同时可以减少接近50% 的能量和钙流失。实验得出SN-2 PLUS先进营养技术助力宝宝充分吸收全面营养,达成5大黄金表现:

1、情绪佳(宝宝少哭闹)

2、吸收好(便秘少,不上火)

3、长得高(骨矿质营养好吸收,不浪费)

4、学得快(脂溶营养吸收好)

5、体质好(身体好少生病)

参考资料来源:百度百科-SN-2 PLUS

请问什么是PHA啊??谢谢:)

植物血凝素(phytohaemagglutinin,PHA),是一种有丝分裂原,主要用于激活免疫细胞――淋巴细胞,是利用国际先进的超低温冷冻技术从红芸豆中提取的一种物质。由于其较难提纯,且成本极高,因此一直以来仅在实验室中作为刺激淋巴细胞增殖的试剂。 一、主要成分 植物血凝素的主要成分为植物多肽,是一种低聚糖(由D-甘露糖、氨基酸葡萄糖酸衍生物构成)与蛋白质的复合物。 二、药理作用 1.植物血凝素为广谱抗病毒药,可刺激T淋巴细胞增殖分化产生大量效应T细胞和细胞毒T细胞,效应T细胞分泌产生大量细胞因子(如干扰素等)杀伤病毒,细胞毒T细胞可直接杀伤病毒。 2.植物血凝素可同时刺激B细胞转化为浆母细胞后增殖分化为浆细胞,浆细胞产生大量非特异性抗体来中和病毒。 3.可增强机体免疫功能,提高骨髓造血机能,促进机体白细胞及多核白细胞数量明显增加;提高机体细胞诱生干扰素,增强机体免疫力,促进抗体形成,增强机体对病原微生物的吞噬作用。 4.植物血凝素与黄芪多糖、左旋咪唑、阿糖腺苷配伍,有明显的增效作用;与部分抗生素等配伍具有相加作用。 5.植物血凝素肌肉注射后约5~15分钟血药浓度达高峰,口服约1小时后血药浓度达高峰,代谢产物主要从尿液排出。 三、特点 1.使用方便、广泛,可以与许多药物同时使用,具有协同作用或相加作用。在粉、散剂中添加植物血凝素,具有明显提高原有产品疗效的作用,同时不干扰原产品的检测,且无种属特异性,可广泛应用于家禽、猪、牛等动物。 2.使用安全,首先使用植物血凝素后不影响机体抗体水平,可用于预防肉仔鸡后期常发的病毒性疾病,避免了由于加强免疫引起的抗体水平过高、疫苗应激反应、药残严重,影响家禽产品出口。其次植物血凝素抗病毒谱广、毒性小、安全范围大。 3.可以与疫苗同时使用,能起到弥补免疫空白期、减缓疫苗应激反应、增强免疫效果的作用。 4.植物血凝素经特殊加工可口服给药,不受消化酶和胃酸的破坏,可常温保存两年(液体保存时一般6个月左右就开始出现浑浊现象,降低疗效)。避免了一般干扰素质量不稳定、应用时口服吸收差、易被破坏,必须低温保存的缺陷。 四、作用 1.主要用于激活免疫细胞――淋巴细胞,是一种干扰素诱导剂,不仅可以刺激机体产生白细胞介素-2和干扰素,还可以刺激机体产生非特异性抗体。 2.广谱抗病毒药,可用于防制家禽、家畜病毒性疾病,如鸡的传染性支气管炎、传染性喉气管炎、新城疫、传染性法氏囊病、鸡痘;鸭瘟、鸭病毒性肝炎;猪圆环病毒病、猪繁殖与呼吸综合征、猪传染性胃肠炎、猪病毒性腹泻、猪繁殖与呼吸综合征、非典型猪瘟;犬、水貂的犬瘟热、犬细小病毒等病毒性疾病。 3.植物血凝素可作为动物免疫增强剂进行治疗、辅助用药或用于免疫功能受损引起的疾病,用来增强动物机体免疫力、提高药物的疗效。 五、临床应用 用于预防肉鸡常见病毒病,30日龄左右使用1~2次,可预防或减轻肉鸡后期病毒性疾病的发生; 用于预防仔猪断奶前后病毒性疾病,与强力霉素、头孢类抗生素等合用,可避免仔猪在断奶后因母乳抗体丧失而导致的免疫力下降或造成大面积发病和死亡; 植物血凝素+抗病毒药物+广谱抗生素可用于防制鸡病毒性疾病(如非典型新城疫、温和型禽流感、传染性法氏囊病初期、各型传染性支气管炎、鸡痘、传染性喉气管炎),急性病毒病慎用; 配合头孢类抗生素,每月对健康蛋鸡进行一次预防,可有效防止蛋鸡发生病毒性疾病; 植物血凝素配合法氏囊抗体、庆大霉素或丁胺卡那可用于防制急慢性传染性法氏囊病;配合呼吸道药物应用可用于防制家禽传染性支气管炎、传染性喉气管炎等由病毒引起的呼吸道系统疾病;与鸭病毒性肝炎血清或黄芪多糖配合应用可用于防制鸭病毒性肝炎;与黄芪多糖和丁胺卡那配合应用,可用于防制鸭瘟。
植物血凝素(Phytohaemagglutinin)是一种有丝分裂原,主要用于激活免疫细胞—淋巴细胞。是一种干扰素诱导剂,不仅可以刺激机体产生白介素-2和干扰素;还可以刺激机体产生非特异性抗体。由于其较难提纯,且成本极高,所以一直以来仅在实验室中作为刺激淋巴细胞增殖的试剂。

聚羟基脂肪酸(PHA)
在微生物细胞,特别是细菌细胞中,大量地存在着一种高分子聚酯—聚羟基脂肪酸(Polyhydroxyalkanoates,简称PHA)。目前已经发现PHA聚酯有至少125种不同的单体结构,并且新的单体被不断地发现出来。由微生物合成的PHA有一些特殊的性能,包括生物可降解性、生物相容性、压电性和光学活性等。另外,根据单体结构或含量的不同,PHA的性能可从坚硬到柔软到弹性变化。PHA有许多潜在的应用前景,国内外都对其进行大量的基础和应用开发研究。最近,清华大学领先在国内外成功地实现了一种性能优良的PHA—3-羟基丁酸和3-羟基己酸的共聚物PHBHHx的工业化生产,为开发这种新型材料的应用提供了原料基础。
PHA家族中由于单聚物、共聚物及共混物种类的众多。同时有具备了多种多样的性能,原则上,PHA能够满足多种人体组织器官的需求,如:心血管系统、角膜胰腺、胃肠系统、肾脏、泌尿生殖系统、肌肉骨骼各系统、神经系统、牙齿与口腔、皮肤等等。目前已经商品化的PHA产品主要有PHB、PHBV和PHBHHx。
已经实现工业化生产的PHA目前只有PHB以及羟基丁酸与羟基戊酸的共聚物PHBV,分别由奥地利林茨化学公司(Chemie Linz AG)和英国帝国化学工业公司(ICI,现在称为Zeneca)在八十年代实现。从1998年以来,清华大学微生物实验室与广东江门生物技术开发中心合作,在国内外首次开发成功了羟基丁酸与羟基己酸的共聚物PHBHHx的工业化生产技术,为这种新型材料的应用开发打下了物质基础。
对于PHA聚合物的生物相容性的研究,主要针对于PHB和PHBV两种聚合物,早期的研究表明,当将这两种聚合物植入体内时,可以引起长时间的急性及慢性免疫反应。以PHB三维泡沫材料作为软骨细胞载体材料,在体外培养过程中,细胞在材料上保持了正常的形态,附着生长迅速,同时分泌软骨特有基质成分,并在动物体内进一步成功和培养出具有三维立体形态及组织学特征良好的新生软骨组织,并且体内移植未见明显免疫排斥反应,另外其材料孔隙率较高,孔径大小适合细胞长入,孔度均匀,具有良好的生物降解性,体内完全降解的时间在三个月左右。但PHBV共聚物还存在机械性能差、细胞结合力弱等问题。为改善这些缺点,有人将可溶性磷酸盐玻璃、HA、磷酸三钙(TCP)等与PHBV组成复合物。可溶性磷酸盐玻璃虽然有助于提高机械强度,但其光滑表面不利于与PHBV的物理结合,且早期溶解率高,释放出大量Na+、P5+和Ca2+,引起较强的组织反应,软组织增生,而新骨生长被抑制。HA可以提供粗糙表面,有利于PHBV与之结合,且HA还具有良好的骨结合力,有利于新骨组织长入,但存在降解难的问题。相比之下,TCP具有较好的生物降解及良好的骨结合力,用TCP作为PHBV的添加剂既有效地增加了机械强度,又提高了骨结合力,对PHBV的降解影响较小。
近年来,一种新型的PHA,聚羟基丁酸己酸酯(PHBHHx)因其良好的物理性能引起了广泛的关注。清华大学微生物实验室发现PHBHHx与PHB在无定形态和结晶态都完全相容,并开发了PHB/PHBHHx共混体系作为新型的组织工程材料。他们的研究表明PHBHHx/PHB共混体系呈现比传统组织工程材料PLA更好的生物相容性,其中PHBHHx的生物相容性比PHB更优越。培养在PHBHHx/PHB共混支架上的软骨细胞不但能够生长、增殖,而且保持了正确的分化形态,胞外基质(ECM)中发现大量磷酸钙盐生成,其成分为天然骨及软骨中的主要无机成分羟基磷灰石(HAp),表明培养在PHBHHx/PHB三维支架上的软骨细胞保持了其正常的生理功能。进一步的研究表明PHBHHx是通过对PHB结晶行为的影响而使共混体系的生物相容性有所提高的。研究中还发现用脂肪酶进行表面处理可以极大增强PHBHHx/PHB体系的生物相容性。
PHA研究的前景展望
PHA的生物相容性和生物降解性使其可以作为体内植入材料包括组织工程材料和药物控制释放载体等。这种特性也可用于农业上包裹肥料或农药的载体,使被包裹的物质在PHA缓慢降解的过程中缓慢释放出来,从而保持长期的肥效或药效,同时减少用药量,延长作用时间,保护耕地的长期可种植性。构成PHA的单体都具有手性,它们是许多药物化学合成的的中间体,有高附加值应用。通过体内合成PHA和体内降解PHA的方法,可以得到许多不同的手性单体。]
随着菌种筛选手段的进一步发展,越来越多的能合成新型PHA的菌种被发现了,从而新的PHA材料也不断地被合成出来。但是,目前对PHA微生物合成的工艺改进远远落后与PHA新材料的开发。
生物材料在组织工程中占据非常重要的地位,同时组织工程也为生物材料提出问题和指明发展方向。由于传统的人工器官(如人工肾、肝)不具备生物功能(代谢、合成),只能作为辅助治疗装置使用,研究具有生物功能的组织工程人工器官已在全世界引起广泛重视。构建组织工程人工器官需要三个要素,即"种子"细胞、支架材料、细胞生长因子。最近,由于干细胞具有分化能力强的特点,将其用作"种子"细胞进行构建人工器官成为热点。组织工程学已经在人工皮肤、人工软骨、人工神经、人工肝等方面取得了一些突破性成果,展现出美好的应用前景。
用生物技术与化学合成方法相结合,可以得到一些单纯用化学或生物的方法无法得到的或用化学合成制造成本过高的新材料,特别是一些具有特殊性能的材料,如生物相容性、生物降解性、光学活性、压电性、导电性和材料的高稳定性等。这些新材料的研究开发,需要材料、高分子、化学、医学、电子、物理、微生物、分子生物学、发酵工程和化学工程领域的专家相互合作,甚至需要工业界的参与,才能产生效果,得到真正有市场应用前景的新材料。
我国目前开展这种对新材料的开发展开的多学科的协同研究还很少。清华大学在“九五”期间,对生物材料聚羟基脂肪酸PHA的微生物合成、发酵生产、高分子性能的研究和应用开发做了多学科协同攻关的很好尝试:由生物、化工、材料、化学和高分子学科组成的攻关队伍经过五年的努力,开发成功了工业化生产新型PHA—3-羟基丁酸和3-羟基己酸的共聚物PHBHHx的技术,并发现了PHBHHx具有比聚羟基丁酸PHB和聚乳酸PLA更好的机械性能和生物相容性,在生物材料和组织工程应用方面有很好的发展前景。
未来新材料的开发,需要开发的终端,特别是工业界提出对材料的要求,生物医学材料是材料科学与工程的重要分支,其最大特点是学科交叉广泛、应用潜力巨大、挑战性强。随着新材料、新技术、新应用的不断涌现,吸引了许多科学家投入这一领域的研究,成为当今材料学研究最活跃的领域之一。在我国,生物医学材料的研究虽然取得一些令人瞩目的成果,但整体水平不高,跟踪研究多,源头创新少。在产业化方面,我国生物医学材料及其制品占世界市场的份额不足2%,主要依靠进口,产品技术结构和水平基本上处于初级阶段。
面对世界生物医学材料研究大发展的浪潮,对于中国这样一个大国,大力发展生物医学材料研究是必须迎接的挑战,也是一次机遇。

高中生物关于脂肪的问题

【脂肪的概念】

脂类是油、脂肪、类脂的总称。食物中的油脂主要是油和脂肪,一般把常温下是液体的称作油,而把常温下是固体的称作脂肪。脂肪所含的化学元素主要是C、H、O。
脂肪是由甘油和脂肪酸组成的三酰甘油酯,其中甘油的分子比较简单,而脂肪酸的种类和长短却不相同。因此脂肪的性质和特点主要取决于脂肪酸,不同食物中的脂肪所含有的脂肪酸种类和含量不一样。自然界有40多种脂肪酸,因此可形成多种脂肪酸甘油三酯。脂肪酸一般由4个到24个碳原子组成。脂肪酸分三大类:饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸。
脂肪在多数有机溶剂中溶解,但不溶解于水。

【脂类的分类】

脂肪是甘油和三分子脂肪酸组成的甘油三酯。
(1)中性脂肪:即甘有三脂,是猪油,花生油,豆油,菜油,芝麻油的主要成分
(2)类脂包括磷脂:卵磷脂、脑磷脂、肌醇磷脂。
糖脂:脑苷脂类、神经节昔脂。
脂蛋白:乳糜微粒、极低密度脂蛋白、低密度脂蛋白、高密度脂蛋白。
类固醇:胆固醇、麦角因醇、皮质甾醇、胆酸、维生素D、雄激素、雌激素、孕激素。

在自然界中,最丰富的是混合的甘油三酯,在食物中占脂肪的98%,在身体中占如%以上。所有的细胞都含有磷脂,它是细胞膜和血液中的结构物,在脑、神经、肝中含量特别高,卵磷脂是膳食和体内最丰富的磷脂之一。四种脂蛋白是血液中脂类的主要运输工具。

【脂肪的生物功能】

脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。
脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。
脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。

概括起来,脂肪有以下几方面生理功能:
1. 生物体内储存能量的物质并供给能量 1克脂肪在体内分解成二氧化碳和水并产生38KJ(9Kcal)能量,比1克蛋白质或1克碳水化合物高一倍多。
2. 构成一些重要生理物质,脂肪是生命的物质基础 是人体内的三大组成部分(蛋白质、脂肪、碳水化合物)之一。 磷脂、糖脂和胆固醇构成细胞膜的类脂层,胆固醇又是合成胆汁酸、维生素D3和类固醇激素的原料。
3. 维持体温和保护内脏、缓冲外界压力 皮下脂肪可防止体温过多向外散失,减少身体热量散失, 维持体温恒定。也可阻止外界热能传导到体内,有维持正常体温的作用。内脏器官周围的脂肪垫有缓冲外力冲击保护内脏的作用。减少内部器官之间的摩擦 。
4. 提供必需脂肪酸。
5. 脂溶性维生素的重要来源 鱼肝油和奶油富含维生素A、D,许多植物油富含维生素E。脂肪还能促进这些脂溶性维生素的吸收。
6.增加饱腹感 脂肪在胃肠道内停留时间长,所以有增加饱腹感的作用。

【脂肪的生物降解】

在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。
萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。

【脂肪的生物合成】

脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20和少量碳链更长的脂肪酸。在真核细胞内,饱和脂肪酸在O2的参与和专一的去饱和酶系统催化下,进一步生成各种不饱和脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。
3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。

【脂肪的供给量和来源】
脂肪的供给量
脂肪无供给量标准。不同地区由于经济发展水平和饮食习惯的差异,脂肪的实际摄入量有很大差异。我国营养学会建议膳食脂肪供给量不宜超过总能量的30%,其中饱和、单不饱和、多不饱和脂肪酸的比例应为1:1:1。亚油酸提供的能量能达到总能量的1%~2%即可满足人体对必需脂肪酸的需要。

脂肪的来源
脂肪的主要来源是烹调用油脂和食物本身所含的油脂。表5是几种食物中的脂肪含量。从下表内的数字可见,果仁脂肪含量最高,各种肉类居中,米、面、蔬菜、水果中含量很少。

【脂肪营养价值的评定】

营养学上根据以下三项指标评价一种脂肪的营养价值:
1. 消化率 一种脂肪的消化率与它的熔点有关,含不饱和脂肪酸越多熔点越低,越容易消化。因此,植物油的消化率一般可达到100%。动物脂肪,如牛油、羊油,含饱和脂肪酸多,熔点都在40℃以上,消化率较低,约为80%~90%。
2. 必需脂肪酸含量 植物油中亚油酸和亚麻酸含量比较高,营养价值比动物脂肪高。
3. 脂溶性维生素含量 动物的贮存脂肪几乎不含维生素,但肝脏富含维生素A和D,奶和蛋类的脂肪也富含维生素A和D。植物油富含维生素E。这些脂溶性维生素是维持人体健康所必需的。

【脂肪有关疾病】

脂肪肝是肝脏内的脂肪含量超过肝脏重量(湿重)的5%。近几年来,脂肪肝发病率有不断上升的趋势,已成为一种临床常见病。

【脂肪的测定方法】

第一法 索氏抽提法
1 原理
样品用无水乙醚或石油醚等溶剂抽提后,蒸去溶剂所得的物质,在食品分析上称为脂肪或粗脂肪。因为除脂肪外,还含色素及挥发油、蜡、树脂等物。抽提法所测得的脂肪为游离脂肪。

2 试剂
2.1 无水乙醚或石油醚。
2.2 海砂:食品中水分的测定

3 仪器
索氏提取器。

4 操作方法
4.1 样品处理
4.1.1 固体样品:精密称取2~5g(可取测定水分后的样品),必要时拌以海砂,全部移入滤纸筒内。
4.1.2 液体或半固体样品:称取5.0~10.0g,置于蒸发皿中,加入海砂约20g于沸水浴上蒸干后,再于95~105℃干燥,研细,全部移入滤纸筒内。蒸发皿及附有样品的玻棒,均用沾有乙醚的脱脂棉擦净,并将棉花放入滤纸筒内。
4.2 抽提
将滤纸筒放入脂肪抽提器的抽提筒内,连接已干燥至恒量的接受瓶,由抽提器冷凝管上端加入无水乙醚或石油醚至瓶内容积的2/3处,于水浴上加热,使乙醚或石油醚不断回流提取,一般抽取6~12h。
4.3 称量
取下接受瓶,回收乙醚或石油醚,待接受瓶内乙醚剩1~2mL时在水浴上蒸干,再于,95~105℃干燥2h,放干燥器内冷却0.5h后称量。
4.4 计算
m1-m0
X = ——————— × 100
m2
式中,X--样品中脂肪的含量,%;
m1--接受瓶和脂肪的质量,g;
m0--接受瓶的质量,g;
m2--样品的质量(如是测定水分后的样品,按测定水分前的质量计),g。

第二法 酸水解法
1 原理
样品经酸水解后用乙醚提取,除去溶剂即得游离及结合脂肪总量。

2 试剂
2.1 盐酸
2.2 95%乙醇。
2.3 乙醚。
2.4 石油醚。

3 仪器
100mL具塞刻度量筒。

4 操作方法
4.1 样品处理
4.1.1 固体样品:精密称取约2g,置于50mL大试管内,加8mL水,混匀后再加10mL盐酸。
4.1.2 液体样品:称取10.0g,置于50mL大试管内,加10mL盐酸。
4.2 将试管放入70~80℃水浴中,每隔5~10min以玻璃棒搅拌一次,至样品消化完全为
止,约40~50min。
4.3 取出试管,加入10mL乙醇,混合。冷却后将混合物移于100mL具塞量筒中,以25mL乙
醚分次洗试管,一并倒入量筒中。待乙醚全部倒入量筒后,加塞振摇1min,小心开塞,放
出气体,再塞好,静置12min,小心开塞,并用石油醚-乙醚等量混合液冲洗塞及筒口附着
的脂肪。静置10~20min,待上部液体清晰,吸出上清液于已恒量的锥形瓶内,再加5mL乙
醚于具塞量筒内,振摇,静置后,仍将上层乙醚吸出,放入原锥形瓶内。将锥形瓶置水浴
上蒸干,置95~l05℃烘箱中干燥2h,取出放干燥器内冷却0.5h后称量。
4.4 计算

【脂肪的临床意义】

正常人每天从粪便中排出的脂肪占干燥粪便量的10%~15%其中含有结合脂肪酸(5%~15%)、游离脂肪酸(5%~13%)、中性脂肪(1%~5%)正常乳儿的粪便较成人粪便中脂肪含量高50%,幼儿粪便中的脂肪含量也高30%,且以中性脂肪为主。 脂肪正常值: 约2~5g/24h 。
中性脂肪在显微镜下呈大小不一的光亮圆形小球状腹泻病人的粪便中的脂肪排出增多,镜下超过6个脂肪滴/HP。当脂肪消化吸收不良时粪便中脂肪滴大量增多。
在阻塞性黄疸时因肠道中胆汁缺乏,有脂肪吸收障碍时,粪便中出现大量的脂肪酸。胰液分泌机能不全,致使消化功能障碍时,则粪便中可出现大量的中性脂肪(脂肪泻)。

【脂肪过量表现】

脂肪摄入过量将产生肥胖,并导致一些慢性病的发生;膳食脂肪总量增加,还会增大某些癌症的发生几率。

缺乏症

必需脂肪酸缺乏,可引起生长迟缓、生殖障碍、皮肤受损等;另外,还可引起肝脏、肾脏、神经和视觉等多种疾病。

食物来源

除食用油脂含约100%的脂肪外,含脂肪丰富的食品为动物性食物和坚果类。动物性食物以畜肉类含脂肪最丰富,且多为饱和脂肪酸;一般动物内脏除大肠外含脂肪量皆较低,但蛋白质的含量较高。禽肉一般含脂肪量较低,多数在10%以下。鱼类脂肪含量基本在10%以下,多数在5%左右,且其脂肪含不饱和脂肪酸多。蛋类以蛋黄含脂肪最高,约为30%左右,但全蛋仅为10%左右,其组成以单不饱和脂肪酸为多。
除动物性食物外,植物性食物中以坚果类含脂肪量最高,最高可达50%以上,不过其脂肪组成多以亚油酸为主,所以是多不饱和脂肪酸的重要来源。

本文地址:http://www.dadaojiayuan.com/jiankang/274176.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章