2016年10月11日讯 对阿斯利康基因组计划负责人David Goldstein来说,面临的挑战不仅仅是如何获得序列,还包括如何明智地使用这些数据。近日,Nature就相关问题对Goldstein进行了访谈。
宣布收集200万人基因组序列计划五个月后,制药巨头阿斯利康委任哥伦比亚大学遗传学家David Goldstein来领导这项任务。
在基因组学项目雄心勃勃的时代,这项长达10年、规模达200万人的基因组计划似乎是合理的步局。制药行业在应用基因组学方面的历史参差不齐。很多公司在世纪之交时投入了巨资,一些分析师将其归咎于不断上升的研发成本和投资回报较差。但业内已了解到,内容丰富的数据库,并不是总能转化为良好的药物开发pipelines。
但Goldstein认为基因组学的时代终于来了。测序成本降低,使研究人员积累了更多的数据。电子病历可以将这些数据与个人病史联系起来。新的实验室技术可以挖掘特定DNA序列的功能,帮助研究人员确定他们正在研究的基因是否与某种蛋白、药物或病人具有功能相关性。
Nature近日在阿斯利康总部英国剑桥与Goldstein进行了访谈。
Q:阿斯利康之前已经在进行基因组学研究了,该基因组计划与之前的有什么不同之处?
Goldstein:和其他大型制药公司一样,阿斯利康已经涉足基因组学研究很多年了。不同之处在于两点:一是规模,二是集中和协调。我们正在试图整合成一个基因组学研究中心。
Q:你在新岗位上准备开展的第一项工作是什么?
Goldstein:其中之一是在公司内部建立起具有良好判断能力的基因组学专业知识。文献对药物开发来讲是非常有价值的信息来源,但这个来源非常复杂。你必须要有专业的知识去分辨这些基因组学学术文献,分清这些文献中哪些信息是和你的药物相关的。此外,文献中存在的一个问题是,其中大部分信息是不可信的。文献中不真实的信息数量让我印象深刻。只有相对较小的一部分研究者知道这些并且懂得如何辨别信息的真假。
Q:你面临的最大挑战是什么?
Goldstein:最大的挑战可能是确保我们的基因组研究与药物研发相关并且有用。如今每个人都意识到基因组学的确在发展中,并不全是天花乱坠的宣传。
阿斯利康建立了一个长达十年的项目,打算坚持研发并得到相应成果。我们必须承认这是一个挑战,在制药行业,坚持某个事物很多年就是一项挑战。
Q:十年足够吗?
Goldstein:实际操作中我们遇到了很多问题。什么时候基因组学研究能够提供临床相关见解,并不好预测。但我认为十年时间对药物开发来说非常合适。阿斯利康是一个大公司,涉及的业务非常多。我们现在的许多基因组学研究工作对阿斯利康没有商业价值,但我们不指望这个项目立即盈利。
Q:该项目会特别关注某些类型的疾病吗?
Goldstein:我们的研究会覆盖阿斯利康所有感兴趣的东西。如果你试图调节某个基因编码的蛋白,你会希望弄清楚与该蛋白作用相关的所有基因变异信息。
Q:学术合作者将成为该计划的一个重要部分。那么合作者会发表他们的研究结果吗?
Goldstein:这是一个大型对外项目。我认为学术合作研究的成果在适当的时候都会发表。合作中确实包括了时间上的一些安排,这样可以提交知识产权材料。
我知道很多公司尝试以一种更加严格的方式利用基因组学,不打算发表研究成果。但这个领域发展如此迅速,如果你自己竖起了高墙,然后把自己围起来做研究,结果也不发表,那么你真的做的非常糟糕。
Q:我们接下来会看到2000万基因组的项目吗?
Goldstein:我认为我们以后不会再称其为项目。很明显,通过一种机制或其他途径,富裕国家的大部分人口最终都会进行测序。保险公司会越来越多地开始承保。人们在考虑生孩子时会先进行测序。将来会有更多的人参与到研究中。越来越多的人会带着他们的测序数据到药剂师或医生那儿进行咨询。
Q:基因组数据库中大多是欧洲血统人群的数据。阿斯利康的这项计划会尝试寻找更多样化的参与者吗?
Goldstein:我会尽力推动,确保基因组数据的包容性。最重要的一个原因是,基因组学如今确实有用了,甚至在个人层面上也非常重要,因此包容性变得越来越重要。
迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。
基因工程的前景科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。
生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。
生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。
美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。
人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。
人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。
科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。
人类基因工程的开展使破译人类全部DNA指日可待。
信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。
人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯·克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分之一世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。
继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。
基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。
基因工程大事记
1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。
1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。
1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。
1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。
1969年 科学家成功分离出第一个基因。
1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。
1983年 科学家首次培育出世界第一个转基因植物转基因烟草。
1988年 K.Mullis发明了PCR技术。
1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。
1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。
1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。
1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。
1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。
2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。
2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。
2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。
2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。
2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。
2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。
科学家首次公布人类基因组草图“基因信息”。
基因研究 各国争先恐后 基因时代的全球版图
让我们看一下在新世纪到来时,世界各国的基因科学研究状况。
英国:早在20世纪80年代中期,英国就有了第一家生物科技企业,是欧洲国家中发展最早的。如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。
德国:德国政府认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款1.5亿马克,成立了3个生物技术研究中心。此外,政府还计划在未来5年中斥资12亿马克,用于人类基因组计划的研究。1999年德国研究人员申请的生物技术专利已经占到了欧洲的14%。
法国:法国政府在过去10年中用于生物技术的资金已经增加了10倍,其中最典型的项目就是1998年在巴黎附近成立的号称“基因谷”的科技园区,这里聚集着法国最有潜力的新兴生物技术公司。另外20个法国城市也准备仿照“基因谷”建立自己的生物科技园区。
西班牙:马尔制药公司是该国生物科技企业的代表,该公司专门从海洋生物中寻找抗癌物质。其中最具开发价值的是ET-743,这是一种从加勒比海和地中海的海底喷出物中提取的红色抗癌药物。ET-743计划于2002年在欧洲注册生产,将用于治疗骨癌、皮肤癌、卵巢癌、乳腺癌等多种常见癌症。
印度:印度政府资助全国50多家研究中心来收集人类基因组数据。由于独特的“种姓制度”和一些偏僻部落的内部通婚习俗,印度人口的基因库是全世界保存得最完整的,这对于科学家寻找遗传疾病的病理和治疗方法来说是个非常宝贵的资料库。但印度的私营生物技术企业还处于起步阶段。
日本:日本政府已经计划将明年用于生物技术研究的经费增加23%。一家私营企业还成立了“龙基因中心”,它将是亚洲最大的基因组研究机构。
新加坡:新加坡宣布了一项耗资6000万美元的基因技术研究项目,研究疾病如何对亚洲人和白种人产生不同影响。该计划重点分析基因差异以及什么样的治疗方法对亚洲人管用,以最终获得用于确定和治疗疾病的新知识;并设立高技术公司来制造这一研究所衍生出的药物和医疗产品。
中国:参与了人类基因组计划,测定了1%的序列,这为21世纪的中国生物产业带来了光明。这“1%项目”使中国走进生物产业的国际先进行列,也使中国理所当然地分享人类基因组计划的全部成果、资源与技术。
基因工程与农牧业、食品工业
运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。
1.转基因鱼
生长快、耐不良环境、肉质好的转基因鱼(中国)。
2.转基因牛
乳汁中含有人生长激素的转基因牛(阿根廷)。
3.转黄瓜抗青枯病基因的甜椒
4.转鱼抗寒基因的番茄
5.转黄瓜抗青枯病基因的马铃薯
6.不会引起过敏的转基因大豆
7.超级动物
导入贮藏蛋白基因的超级羊和超级小鼠
8.特殊动物
导入人基因具特殊用途的猪和小鼠
9.抗虫棉
苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。
[编辑本段]基因工程与环境保护
基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。
利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。
基因工程与环境污染治理
基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。
(通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。)
基因治疗可待 医学革命到来
“基因”释意 现在我们通用的“基因”一词,是由“gene”音译而来的。基因就是决定一个生物物种的所有生命现象的最基本的因子。科学家们认为这个词翻译得不仅音顺,意义也贴切,是科学名词外语汉译的典范。基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。
用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。
我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。
无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。
可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。
[编辑本段]基因工程将使传统中药进入新时代
5月13日 13日参加“中药与天然药物”国际研讨会的中国专家认为,转基因药用植物或器官研究、有效次生代谢途径关键酶基因的克隆研究、中药DNA分子标记以及中药基因芯片的研究等,已成为当今中药研究的热点,并将使传统中药进入一个崭新的时代。
据北京大学天然药物及仿生学药物国家重点实验室副主任果德安介绍,转基因药用植物或器官和组织研究是中国近几年中药生物技术比较活跃的领域之一。
在转基因药用植物的研究方面,中国医学科学院药用植物研究所分别通过发根农杆菌和根癌农杆菌诱导丹参形成毛状根和冠瘿瘤进而再分化形成植株,他们将其与栽培的丹参作了形态和化学成分比较研究,结果发现毛状根再生的植株叶片皱缩、节间缩短、植株矮化、须根发达等;而冠瘿组织再生的植株株形高大、根系发达、产量高,丹参酮的含量高于对照,这对丹参的良种繁育,提高药材质量具有重要意义。
果德安说,研究中药化学成分的生物合成途径,不仅可以有助于这些化学成分的仿生合成,而且还可以人为地对这些化学成分的合成进行生物调控,有利于定向合成所需要的化学成分。国内有关这方面的研究已经开始起步。
据了解,中国在中药研究中生物技术应用方面的研究已经渐渐兴起,有些方面如药用植物组织与细胞培养,已积累了二三十年的经验,理论和技术都相当成熟,而且在全国范围内已形成了一定的规模。其中,中药材细胞工程研究正处于鼎盛时期。
果德安介绍说,面对许多野生植物濒于灭绝,一些特殊环境下的植物引种困难等问题,中国科学工作者开始探索通过高等植物细胞、器官等的大量培养生产有用的次生代谢物。研究内容包括通过高产组织或细胞系的筛选与培养条件的优化和通过对次生代谢产物生物合成途径的调控等,达到降低成本及提高次生代谢产物产量的目的。
此外,近来利用植物悬浮培养细胞或不定根、发状根对外源化学成分进行生物转化的研究也在悄然兴起,并已取得了一定的进展。
不仅如此,科学工作者更加重视对次生代谢产物生物合成途径调控的研究。这些研究都取得了令人兴奋的成果,说明中国的药用植物的细胞培养已进入一个崭新的时代。
果德安认为,今后研究的主要方向应集中在价值大且濒危的药用植物的组织细胞培养;对次生代谢产物的产生进行调控;一些重要中药化学成分的生物转化。另外,还应该加强动物药的生物技术研究。
[编辑本段]基因工程与医药卫生
1.基因工程药品的生产:
许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。
微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。
⑴基因工程胰岛素
胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。
将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%!
⑵基因工程干扰素
干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。
基因工程人干扰素α-2b(安达芬) 是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。
⑶其它基因工程药物
人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。
2.基因诊断与基因治疗:
运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。
◆SCID的基因工程治疗
重症联合免疫缺陷(SCID)患者缺乏正常的人体免疫功能,只要稍被细菌或者病毒感染,就会发病死亡。这个病的机理是细胞的一个常染色体上编码腺苷酸脱氨酶(简称ADA)的基因(ada)发生了突变。可以通过基因工程的方法治疗。
基因工程——产最高效药物的转基因动物
转基因动物是一种个体表达反应系统,代表了当今时代药物生产的最新成就,也是最复杂、最具有广阔前景的生物反应系统。就通过转基因动物家畜来生产基因药物而言,最理想的表达场所是乳腺。因为乳腺是一个外泌器官,乳汁不进入体内循环,不会影响到转基因动物本身的生理代谢反应。从转基因动物的乳汁中获取的基因产物,不但产量高、易提纯,而且表达的蛋白经过充分的修饰加工,具有稳定的生物活性,因此又称为“动物乳腺生物反应器”。所以用转基因牛、羊等家畜的乳腺表达人类所需蛋白基因,就相当于建一座大型制药厂,这种药物工厂显然具有投资少、效益高、无公害等优点。
从生物学的观点来看,生物机体对能量的利用和转化的效率是当今世界上任何机械装置所望尘莫及的。因此,通过转基因动物来生产药物是迄今为止人们所能想象得出的最为有效、最为先进的系统。
转基因动物的乳腺可以源源不断地提供目的基因的产生(药物蛋白质),不但产量高,而且表达的产物已经过充分修饰和加工,具有稳定的生物活性。作为生物反应器的转基因运动又可无限繁殖,故具有成本低、周期短和效益好的优点。一些由转基因家畜乳汁中分离的药物蛋白正用于临床试验。
目前,我国在转基因动物的研究领域,已获得了转基因小鼠、转基因兔、转基因鱼、转基因猪、转基因羊和转基因牛。20世纪90年代,国家“863”高技术计划已将转基因羊——乳腺生物反应器的研究列为重大项目。
虽然目前通过转基因动物(家畜)——乳腺生物反应器生产的药物或珍贵蛋白尚未形成产业,但据国外经济学家预测,大约10年后,转基因运动生产的药品就会鼎足于世界市场。那时,单是药物的年销售额就超过250亿美元(还不包括营养蛋白和其他产品),从而使转基因动物(家畜)——乳腺生物反应器产业成为最具有高额利润的新型工业。
2000年12月25日,北京三只转基因羊的问世以及在此之前各种转基因蔬菜、水稻、棉花等,使人们对转基因技术备加关注,那么转基因技术到底是一种什么样的神秘技术呢?
北京市顺义区三高科技农业试验示范区的北京兴绿原生物科技中心总畜牧师田雄杰先生介绍说,转基因动物和转基因羊的意义,不在于羊本身,而是它们身上产出的羊奶可以提取α抗胰蛋白酶,它们中的每一只都可称为一座天然基因药物制造厂,价值连城。
中国工程院院士、上海儿童医院上海医学遗传研究所所长曾溢滔先生认为,转基因动物是指通过实验方法,人工地把人们想要研究的动物或人类基因,或者是有经济价值的药物蛋白质基因,通常称为外源基因,导入动物的受精卵(或早期胚胎细胞),使之与动物本身的基因组整合在一起,这样外源基因能随细胞的分裂而增殖,并能稳定地遗传给下一代的一类动物。
田雄杰先生介绍,制备转基因羊,就是将人的α抗胰蛋白酶基因通过显微操作注进母羊受精卵的雄性细胞核,并使之与羊本身的基因整合起来,形成一体,这种新的基因组可以稳定地遗传到出生的小羊身上。小山羊也成了人工创造的与它们母亲不同的新品系,它们的后代也将带有这种α抗胰蛋白酶基因。这个过程有些类植物的嫁接术。
制备转基因动物是项复杂的工作。目前,在转基因动物研制中,外源基因与动物本身的基因组整合率低,其表达往往不理想,外源基因应有的性质得不到充分表现或不表现。实验运动如牛、羊和猪的整合率一般为1%左右。这种情况的原因可能是多方面的,首先是目的基因的问题,不同的外源基因表达水平不相同,因每个个体而异;其次是外源基因表达载体内部各个部分的组合和连接是否合理等;还有一点更重要,就是外源基因到达动物基因组内整合的位置是否合理。科学家还弄不清楚整合在哪个伴置表达高,哪个位置表达低,人们还无法控制外源基因整合的位置,而只能是随机整合。因此,整合率低也就在所难免。
尽管转基因动物还有一些技术亟待解决,但是转基因动物研究所取得的巨大进展,特别是它在各个领域中的广泛应用,已经对生物医学、畜牧业和药物产业产生了深刻影响。
毫无疑问,美国是生物制药行业的绝对领先者。美国的生物技术药物年销售额占到全球的60%以上,拥有世界上最成功的生物制药公司和最先进的技术。美国的生物制药公司数量也位居全球第一,小型独资生物技术研发公司的大量出现成为一种美国现象,而在欧洲和日本,这种特征并不那么明显。研究美国生物制药行业的外部生存环境与产业竞争力的关系,显然对分析中国生物制药行业的现状和发展方向大有裨益。
一、技术突破带动市场热情追捧
华尔街每一次对生物技术股的追捧,都与生物技术领域的重大突破休戚相关。
20世纪50-70年代,基础分子生物学研究取得了重大进展,逆转录过程、限制性内切酶、末端转移酶、连接酶等的发现使得基因重组成为可能,许多难以获得的蛋白被表达出来。这些被称为“魔术子弹(magic bullet)”的蛋白多针对一些难以治愈的疾病,干扰素、EPO、胰岛素均是这个时期的产物。技术的重大突破使生物技术产品工业化成为可能,许多生物技术公司应运而生,并催生了80-90年代初期资本市场第一次无比高涨的热情。
20世纪90年代中期,美国股市整体走淡,第一次生物产业投资狂潮亦渐渐平息,生物技术企业在资本市场上反应平淡,IPO减少,生物技术股总市值增长缓慢。而仅仅几年后的2000年,人类基因组计划(HGP)的实施拉开了第二次生物技术革命的序幕。HGP这将使得许多疾病的病因将被揭开,药物设计从最初的随机发现转向靶向研究。生物技术划时代的突破性革命重新点燃了投资者的热情,2000年,华尔街生物技术股总市值达到3600亿美元,几乎是1999年的3倍!风险投资总额也达到顶峰。
以Amgen为例。该股在Nasdaq上市后股价持续走高,从可获得的数据来看,1984年末仅为0.104167美元,到1989年该公司第一个产品Epogen获得FDA批准,股价已上涨到1.020833美元!1991年,公司的第二个产品Neupogen获得批准,股价亦从1990年末的2.59375美元上涨到1991年末的9.46875美元!
Amgen的股价下一次大幅上涨始于1998年,同期Nasdaq生物技术指数亦大幅上涨,这一次资本市场对生物技术股的热情追捧主要由于我们在上文提到的人类基因组计划渐渐浮出水面。
Genentech又是一例。该股股价走势与其治疗型单抗的上市紧密相关。上文表中显示,Genentech分别于1997、1998年分别上市了2个单抗产品,这是第一波上涨的起源。2003、2004年,该公司又上市3个单抗产品,对应的,股价亦从2002年底的16.58美元一路上扬。
Millennium的股价走势也许最能代表生物技术股的特征。该股股价随着人类基因组计划的推进愈走愈高,当Nasdaq为以网络股、生物技术股为代表的科技股疯狂的时候,该股股价从1998年底的6.47美元一直涨到2000年底的61.88美元,几乎翻了10倍!而到2001年,伴随着科技股泡沫的破灭,股价一路下滑,近年来保持平稳。其间的跌宕起伏,也许就体现着生物技术股的魅力。
二、制度环境——产业化的助推剂
美国国会在20世纪80年代初通过的《贝赫-多尔法案》和《斯蒂文森-魏德勒法案》允许将财政资助的研究成果申请专利,并允许将专利授权给某个制药企业专营。在此之前,自然界已知的微生物、细胞、蛋白等因被认为是天然物质而无法申请专利,这两项法案的推出使得学术成果向商业化的转换加快,大量研发型生物制药公司纷纷成立,大学等科研单位成为早期美国生物制药公司(包括Amgen和Genentech)的发源地。
美国的小型生物制药公司初创时大多与科研单位紧密联系,强大的学术能力起到了明显的推动作用。美国科技劳动力市场的高度流动性、学术研究成果的商业化倾向促使优秀科学家参与到企业中去进行研究开发。美国政府根据科学家的申请,最高可出资100万美元帮助握有创新生物技术的学者注册成立新型生物技术公司,以促进该技术的产业化,也就是说,政府投资提高了科学家转型为企业家的成功率。
资料来源:中国生物技术产业发展报告
三、融资渠道——注入生命之血
生物技术产业的蓬勃发展也带动了资本市场的热情,20世纪80-90年代初期是美国生物制药资本狂热期。美国风险投资业(VC)经历70年代的萎缩后80年代开始复兴,生物技术的快速发展吸引了大量VC涌入。以Genentech为例,公司最初以一家VC公司的10万美元作为科研启动经费,作为回报,该公司持有其25%的股份。9个月以后,另一家VC公司投资85万美元,持股25%。与上一次注资相比,每股价格从12.5美分上涨到78美分。此时Genentech的产品——生长激素抑制素、重组人胰岛素、重组人生长激素等还尚在实验之中。1977年,Genentech合成生长激素抑制素,这一突破再次吸引VC的眼球,公司第三次获得VC投资额95万美元,但这家VC公司只得到了8.6%的股份。
VC在支持新生物技术公司成长过程中起到了非常重要的作用。同其它制药子行业一样,生物技术公司在产品上市之前需要大量的资金投入,表中列举了PhRMA成员药品研发各阶段资金投入比例,这当然也包括生物制药公司。表中数据表明,超过40%的资金投入集中在上市前临床实验阶段。由于早期许多生物技术公司脱胎于大学等科研机构,临床前研发资金多来源于政府拨款,因此VC(还有一些大型化学制药公司)主要从临床实验阶段介入进行投资。
Nasdaq市场在生物技术公司的发展过程中功不可没。Nasdaq放宽对新上市公司的要求,吸引了大批在80年代开始快速成长的公司,在经过前期的投入后,股票上市是VC退出的最佳方式。Nasdaq对企业上市要求比较低,只要符合下面的三个条件及一个原则,就可以申请挂牌。
80年代,生物技术企业首发上市交易活跃,投资者疯狂追捧。1980年10月,Genentech作为第一家生物企业在NASDAQ上市,此时,Genentech只有4年的发展时间,主要产品尚在酝酿之中,总收入只有900万美元,税前利润仅30万美元,总资产500万美元。但公司上市1小时之内股价从每股35美元涨至每股88美元,成功募集3500万美元。VC、高科技企业、Nasdaq市场三者之间形成了共同繁荣的局面。
时至今日,VC和IPO仍然是美国生物技术企业募集资金的主要渠道,占到整个行业募集资金的50%左右。
(一):GTL计划分析
上个世纪分子生物学的突破性成果成为生命科学的生长点,使生命科学在自然科学中的位置起了革命性的变化;蛋白质、酶、核酸等生物大分子的结构、功能和相互关系的揭示为研究生命现象的本质和活动规律奠定了理论基础。进入21世纪以后,美国能源部启动了新的战略计划—“基因组到生命”(Genomes to Life,GTL)计划,为生命科学在能源和环境领域的应用奠定了基础。
1 GTL计划的背景
为期五年、资助强度为1亿美元的后基因组计划“从基因组到生命(Genomes to Life)”是由美国能源部于2002年7月正式推出,其基础是在人类基因组计划和1994年开始实施的美国微生物计划。
2005年10月3日,美国能源部公布了新一期的生物研究综合计划——GTL计划路线图。GTL路线图以原有的GTL研究项目为基础并将之扩展,至今已经有800多名科学家和技术专家参与该项目。
2 GTL计划的目标
GTL计划的核心目标就是在未来的十到二十年时间里,了解几千种微生物的基因组及微生物系统是如何调控生命活动的,为使用生物手段解决环境问题铺平道路。GTL路线图将扩大基因组项目的投入,帮助国家解决能源和环境难题。此项研究需要填补知识空白点,发展生物技术,并在数据挖掘、计算和存储中应用生信息学。
GTL计划的基础是准确地刻画出生命系统的所有“分子机器”,认识“分子机器”在生命体中是如何协调工作的。这需要收集大量的基因组数据及其相关数据,尤其是基因组表达的数据,以及不同细胞内、不同条件下蛋白质组装和作用的数据。
GTL计划的具体目标包括:(1)鉴别“分子机器”,这些分子机器主要是蛋白质的复合物,并且执行生命系统的基本功能;(2)弄清控制“分子机器”行为的基因调控网络;(3)认识自然环境中的微生物群体;(4)发展建立和实现生物系统模型所需的计算机技术。
3 GTL计划的意义
21世纪人类面临健康、能源、环境等一系列迫切需要解决的问题,生物学的发展也许是解决这些问题的关键,基因组信息的研究则是理解生命体系的分子组成、调控机制的基础。这需要了解整个生物体系与环境相互作用的方式与机制,并利用这些信息来指导后续的生物学研究。
基因组中的基因按照一定的时间和空间规律被表达成蛋白质,而蛋白质需要和其它蛋白质或者核酸相互作用,结合起来形成有机的“分子机器”。GTL计划的实施将促进生物、物理、计算科学多学科的交叉与进步,促进实验设备、软件工具、分析方法、以及科学思想上的重大突破,为多角度的全面理解生物体打下基础,并将其应用到生物与环境相互影响与作用的问题探讨中。这些都是将生物技术应用于能源和环境问题解决的基础。
这一基于人类基因组计划的新计划的实施,将以整体理解和预测人体和微生物等生物系统为内容,为环境、能源等问题的解决提供生物技术手段。
(二):GTL路线图
美国能源部于2002年开始了基因组到生命计划(Genomes to Life,GTL),为人类利用生物技术手段解决能源和环境问题提供了手段。2005年10月3日,美国能源部公布了新的GTL计划路线图,为GTL的具体实施提供了指导方向。
1 GTL计划实施的关键
GTL路线图对GTL计划实施的关键进行了阐述。在此之前实施的人类基因组计划着重于基因组表达的研究,但对于细胞内、不同条件下蛋白质表达和组装的研究很少。对于这些研究内容的了解与认识是GTL计划实现一个关键环节。GTL计划实现的另一个关键环节是高性能计算,利用先进的计算工具管理和集成研究获得的数据,建立细胞的系统模型,并进行计算机模拟,在此基础上深入分析,进而认识“分子机器”的工作机理。
在高性能计算的研究方面,建立基本的生物信息学算法和模拟过程的方法,确定数据标准,开发可视化工具是GTL计划的主要目标。GTL计划中的许多计算任务的计算量非常大,需要每秒万亿次浮点计算能力的超大型计算机。
2 GTL路线图的实施机构
美国能源部致力于为GTL计划的实施提供必要的科学平台,以支持科研和技术成果的应用。GTL计划将建四个前沿生物学机构,以支持相关的技术的发展、方法的研究、计算能力的提高,并设立公共科研平台。该平台的服务对象不仅包括科研团体,也包括产业界,以加速科研成果的转化或技术转移。GTL计划成功的核心是发展计算和信息技术,以克服基于基因组序列的生物学功能研究上的障碍。美国能源部将构建整合的计算环境,把各种实验数据、理论、模型和新观点融入到基本的生物学机制发现和系统生物学理论和试验的发展。
美国能源部的科学办公室是GTL路线图实施的主要协调机构,致力于提供非凡的科学发现和科研工具,改变人们对能源和物质的理解,提高美国经济和能源安全水平。办公室的主要任务包括:(1)为国家面临的能源安全提供解决方案,为国家能源与经济安全提供必要的科学基础;(2)国家物理科学最主要的支持,在280多所大学、15个国家实验室和许多国际研究机构进行科研投资;(3)为国家科学事业提供最主要的科研工具,从科学共享出发,建造和运行公用的科研设备;(4)在科学领域内最大限度地支持核心能力建设、理论建设以及实验和模拟,使美国保持在世界知识创新的领先地位。
GTL计划成功实施的关键要素是整合计算和技术平台,为科研和生物技术方案发展提供及时、便捷的平台。在生物学的新发展中,计算技术和生物学本身已经同等重要;因此,GTL由美国能源部科学办公室的两个部门——生物与环境研究办公室和前沿科学计算研究办公室合作完成。
3 GTL路线图战略
GTL战略目标是理解生物学系统,发展研究生物学机制的计算模型,并且利用这些模型来预测生命系统的行为,最终的目标是利用微生物的生物化学过程来为一系列的创新应用服务。这需要通过有效的研究、生产、成本和质量控制、效率提高来实现。
正如人类基因组计划能够刺激生物医药及生物技术工业的增长一样,GTL路线图中列出的研究也将加速新的生物工艺学的增长。与能源和环境相关的系统生物学是一项探测未知微生物世界的计划,以DNA序列编码信息为起点,目的是找到更加清洁和更加安全的生物资源、修复有毒废料,诠释微生物在全球气候变化中的作用,并发展与之相关的新兴科学。微生物可以用作驱动21世纪的综合经济力发展的工艺和新产品。
该路线图描绘了其具体的发展路径,包括新兴技术的利用、综合计算技术的发展和新研究设施的开发使用等。这些目标的实现,依赖于科学家对新型微生物的发现,对生命的起源和局限性以及对生命科学研究的新认识。微生物具有广阔地遗传性和多样性,因而它们的发展意味着地球环境的繁荣,包括极端温度,化学和压力下的环境。大多数时间,微生物生活在广泛的自然环境中,形成了各种各样的生物群落。这些生物群落已经演变成综合生物化学体系,要比任何工业领域的化学工艺体系具有高地选择性,能源利用效率和更少地污染。GTL路线图将利用这些微生物,为化学工艺体系的全面提升铺平道路。
(三):GTL实施阶段
美国能源部于2002年开始了基因组到生命计划(Genomes to Life,GTL),为人类利用生物技术手段解决能源和环境问题提供了手段。2005年10月3日,美国能源部公布了新一代生物研究综合计划——GTL计划路线图,为GTL的具体实现提供了指导方向。
1 GTL计划实施的阶段
GTL计划的实现分三个阶段:
第一阶段:开展对有关对能源和环境相关的复杂系统试验关键问题的研究,开发新技术和新的计算技术,改进研究设施;
第二阶段:利用先进工具和新技术开展研究,快速了解生物学过程,提出能源和环境问题解决的新思路,收集全球气候与生物过程相互作用的信息;
第三阶段:将前期获得的知识和能力快速转化成革命性的新工艺和新产品,满足国家能源和环境的需要。
2 GTL计划第一阶段的目标
GTL第一阶段的主要目标主要是通过科学、技术和应用工艺三方面的起步为GTL计划的实施奠定基础。
科学基础:系统生物学的基因组学基础研究,分子、细胞和群落水平的研究,以及研究的关键目标与战略设定。
技术,计算与设施:高级技术发展与测试,前沿研究、计算与技术升级,机构/设施研究、发展、设计与建立。
目标应用:目标导向的关键系统选择,细胞与群落过程及相互作用的认识,系统数据与战略分析。
3 GTL计划第一阶段的目标
GTL第二阶段的主要目标则在通过科学、技术和应用过程三方面将科研成果工程化。
科学基础:关键系统和关键过程的高通量研究,比较分析、系统模型发展,整合实验与计算的系统。
技术,计算与设施:设施运行,整合数据与计算能力的运行,快速收集并应用完整的生物学系统数据的能力。
目标应用:开始目标模式系统分析,工程战略目标的理解,特定应用战略设定。
4 GTL计划第一阶段的目标
GTL第三阶段的将在科学、技术和应用工艺三方面进一步深入发展,并将其具体应用到各个领域。
科学基础:目标方案设计的知识整合,科学与技术发展与应用,科学创新与下一代概念发展。
技术,计算与设施:工程系统的设施应用、测试、评价、监控和鉴定,新功能与新概念的工程化。
目标应用:完整工程系统的设计与发展,工程系统试验与评价,下一代工程的发展。
(四):GTL应用目标
美国于2002年提出的基因组到生命(Genomes to Life,GTL)计划目标是开展生命的分子机制及调控网络研究,在分子水平理解自然环境下微生物群体的功能特征、建立计算机模型理解复杂生物系统并预测其行为。在此基础上,2005年提出的GTL路线图对如何开展利用生物技术手段解决能源和环境问题进行了具体阐述。
1 GTL路线图的内容
GTL路线图是依据美国能源部的目标制定的。路线图战略整合了基因组、系统生物学、微生物、计算科学和主要机构目标,并对三个阶段中各个部分的计划制定了具体的时间表和逻辑构架。在对能源产出、环境修复和二氧化碳循环与吸收的具体目标中,路线图给出了生物科技可以支持的具体领域,以及实现这些目标所应应对的挑战。为实现这些目标,路线图给出了具体的研究计划和目标技术平台,以及相关的管理、培训、伦理和社会等问题的考虑。
GTL路线图的中心是整合的生物学计算平台。系统生物学的发展要求不断增加约束条件来缩小问题的解空间,解空间的缩小极大地帮助了分析、解释、甚至预测来自实验的结果。GTL路线图描述了模型、数据与数据分析、理论等相关内容,同时指出如何实现面向公众的应用和计算平台的建立,以形成GTL研究项目和实施的“中枢神经系统”。
此外,GTL路线图还指出了如何将不同机构进行有效管理,使其高水平、高通量、高效率、高质量、低成本地运行。
2 生物燃料方面的应用目标
GTL的科学计划与美国能源部的目标相统一,美国能源部研究在生物燃料方面的目标包括:
(1)纤维素向燃料的转化,具体包括纤维素酶活性的认识与提高,糖利用与酒精发酵,以及流程的整合。
(2)太阳能向氢能燃料的微生物转化过程,具体包括光解循环生产,光合生物燃料系统的设计。
3 环境修复方面的应用目标
美国能源部研究在环境修复方面的目标包括以下:
(1)利用微生物过程降低有毒金属含量,具体包括理解微生物-金属的相互作用,设计修复过程。
(2)地表微生物群落在污染物转移中的作用,具体包括理解污染物转移的结果与效应,支持修复过程。
4 二氧化碳循环与吸收
美国能源部研究在二氧化碳循环与吸收方面的目标包括:
(1)海洋微生物群落在生物二氧化碳泵中的地位与作用,具体包括对C、N、P、O和S循环的认识,气候变化预测,二氧化碳吸收的影响评估;
(2)陆地微生物群落在全球碳循环中的地位与作用,具体包括对C、N、P、O和S循环的认识,碳变化与气候变化预测,以及二氧化碳吸收的评估。
(五):GTL科学路线图与系统生物学
上个世纪分子生物学的突破性成果成为生命科学的生长点,使生命科学在自然科学中的地位起了革命性的变化;蛋白质、酶、核酸等生物大分子的结构、功能和相互关系的揭示为研究生命现象的本质和活动规律奠定了理论基础。2005年,美国能源部公布了基因组到生命(Genomes to Life,GTL)计划的路线图,指出了将系统生物学应用于能源和环境问题的解决。
1 GTL的科学路线图
GTL的科学路线图包括:
(1) 基因、蛋白、生物分子、生物途径和系统的描述,具体包括基因组研究与比较、新功能的自然系统基础研究、蛋白的生产与定位,以及生命过程相互作用和复合体的分析。
(2)功能与调节的理解,具体包括分子反应的计量、功能试验的实现。
(3) 机制预测模型的发展,具体包括实验设计、分子设计和操纵、细胞系统的利用。
(4) 群体及其潜在功能分析,具体包括基因组测序和比较,过程的自然系统筛选,以及蛋白生产和定位。
(5) 理解群落反应和调节,具体包括二氧化碳、营养和生物地球化学循环的比较、细胞和群体分子调查以及群体功能试验。
(6) 预测反应及影响,具体包括建立相互作用和预测模型、自然和人工过程的应用。
这些计划的目标产出是:
(1) 系统工程,包括系统设计展开的战略、生命系统和细胞外系统以及鉴定分析。
(2) 强大的政策和工程科学基础,包括自然事件的模式生态系统反应以及介入战略的效率和影响分析。
2从基因组到生物体的系统生物学研究
传统生物学主要基于还原论的研究,通过实验的方法解决问题。然而,生物体是一个复杂系统,它不仅仅是基因与蛋白质的集合,系统特性也不能仅仅通过勾画其相互联系而获得完全理解。系统生物学则基于大量的数据采集与分析,利用软件工具、分析方法、以及新的科学思想分析等研究生物系统动态行为,充分理解其稳定性、鲁棒性背后的机制。
从基因组到生命(GTL)计划,跨越分子、细胞、组织器官、系统到生命,是真正体现生命科学从分析到综合、从还原论到整体研究变革的研究计划。在人类基因组计划基础上GTL计划正体现了这一特点,是新的研究规划。系统生物学在分子、细胞、组织、器官和生物体整体水平上研究结构和功能各异的各种分子及其相互作用,并在基因组序列的基础上完成由生命密码到生命全过程的研究;从对生物体内各种分子的鉴别及其相互作用的研究,到对生物途径、分子网络、功能模块的研究,最终完成整个生命活动的路线图。GTL路线图的推出,则将这些具体计划应用到能源、环境问题的解决指出了具体道路,是将生物技术应用于人类所面临的资源、能源和环境瓶颈解决的范例。
生命复杂系统的最重要的特征不在于它非常复杂的个别组成成分,而在于组成成分之间的关系和这种关系形成的动力学,系统功能的综合要高于每一个子成份的分析。生命科学和生物技术的发展,是解决人类发展所面临的资源、能源、环境与健康等问题的有效途径。从GTL路线图的实施可以看出,通过系统生物学及其相关技术的发展,来实施这一目标,是生命科学和生物技术的发展方向。
本文地址:http://dadaojiayuan.com/jiankang/267860.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
上一篇: 卖卖卖!阿斯利康向强生出售喷鼻剂业务