登录
首页 >> 健康生活

Cell提出HIV疫苗开发新思路(北京京蒙高科干细胞技术有限公司的主要技术团队)

佚名 2024-05-06 02:09:05

Cell提出HIV疫苗开发新思路

2016年06月25日讯 第一项也是当前唯一的检测分离自婴儿的HIV中和抗体的研究,发现了相比成人,婴儿在感染后可以相对快速地生成可抵御许多HIV病毒变种的新抗体。这表明,模拟婴儿体内的感染和免疫反应可以改善从设计到给药HIV疫苗开发的各个方面。研究论文发表在《细胞》(Cell)杂志上。

HIV是一种狡猾的感染,其找到了许多的途径逃避免疫系统的抓捕,使得它成为开发预防疫苗一个棘手的靶标。专家们想象,一种成功的疫苗将触动我们的身体生成可以阻止广泛的HIV病毒变种感染靶细胞的抗体。偶然,一些HIV感染者会自然地形成这些广泛中和抗体--但这种情况只会发生在HIV暴露数年后。一种有效的疫苗必须能在数月而非几十年内提供保护。

索取赛默飞Mem-PER Plus膜蛋白提取试剂盒详细技术资料看它如何高效富集内在膜蛋白和相关蛋白。

该研究小组利用了在抗逆转录病毒药物出现前,从母亲为HIV阳性的内罗毕婴儿处取得的样本。

研究结果表明,婴儿可以在HIV感染的第一年内产生广泛中和抗体,生成一种广泛中和抗体需要的体细胞高频突变比成人中预计少得多。此外,这种抗体反应不是仅由单抗体,而似乎是由多克隆抗体所控制,这可能使得它更加难以逃避。

这项研究的优势在于:Overbaugh在HIV领域领导的研究工作检测了婴儿体内的广泛中和抗体。研究结果阐明了婴儿对HIV产生的免疫反应一些关键的差异,这有可能揭示出一些改进HIV疫苗设计的途径。

研究的局限之处在于:该研究描述了自然HIV感染后广泛中和抗体的生成,但它没有表明这样的抗体将预防感染的发生。

由美国国家卫生研究院(NIH)的科学家们领导的一个研究小组报告了一个一箭三雕的研究。他们发现了HIV上可为疫苗靶向的一个新脆弱位点,一种结合这一靶位点的广泛中和抗体,以及这一抗体阻止病毒感染细胞的机制。

来自中国疾病预防控制中心(CDC)、斯克里普斯研究所(TSRI)等机构的科学家们,描述了在一类有效对抗HIV的强大免疫分子中发现的一种前所未见的未成熟(“青少年”)抗体。这项研究工作被选为封面故事,发布于2016年4月5日的《Immunity》杂志上。有关抗HIV抗体进化和关键性状的新知识,可以帮助研究人员设计出一种疫苗来预防艾滋病(中国首席防艾专家Cell子刊封面发布艾滋病研究重大成果 )。

由以色列贝斯女执事医疗中心(BIDMC)领导的一项新研究显示,一种新型HIV-1疫苗疗法为一半接种疫苗的非人灵长类动物(NHPs)提供了完全防护,对抗了猴免疫缺陷病毒(SIV)连续6次反复的攻击。

北京京蒙高科干细胞技术有限公司的主要技术团队

高锦博士:中科院生物物理研究所教授,北京京蒙高科干细胞技术有限公司董事长兼总裁,1993年获中国协和医科大学医学博士学位,1996年参与组建北京大学肿瘤物理诊疗中心,同年进入中科院生物大分子国家重点实验室从事肿瘤治疗研究。1999年在中国科学院生物物理研究所开始组建生命科学应用研究与发展中心,出任中心主任和首席科学家,兼任中国科学院北京百奥药业技术总监。为九五和十五期间国家高技术发展计划(863计划)海洋生物技术主题专家组成员、国家计委产业示范工程的首席科学家、中国科学院和科技部两部科技型企业上市审查委员会技术评审专家。现任国家发展与改革委员会生物技术产业和示范工程项目审评专家。
高锦博士具备先进的细胞治疗技术和成熟经验:自1993年起在国内率先开展细胞治疗,是国内肿瘤细胞治疗的发起人和肿瘤细胞治疗的主要推动者。他领衔推动的肿瘤靶向细胞治疗已经取得重要进展,在国内示范性开展肿瘤细胞治疗并建立了规范的治疗体系,形成个体化肿瘤治疗的新模式。在上世纪90年代系统引进国际先进细胞治疗技术(CIK,DC,HSP,SP,免疫重建,TUMOR LIBRARY,TAA等)的基础上,展开了肿瘤细胞技术和临床治疗研究。并于2000年在国内率先组建了肿瘤细胞治疗为核心细胞技术专业化公司,推动肿瘤的细胞资源利用和肿瘤的细胞和分子治疗,探索肿瘤细胞治疗技术国内的可能运做规范和标准。具备高水平的推进现代科技产业化的理论和实践经验。共发表学术论文50余篇,申请国内发明专利8项。
胡晓年博士:中国医学科学院基础医学研究所教授,北京京蒙高科干细胞技术有限公司副董事长, 1991年获中国医学科学院基础医学研究所理学博士学位,1988年参加国家“七·五”攻关课题和美国NIH人食管癌癌基因研究;1991年参加国家自然科学基金和博士点课题癌基因表达调控机制研究;1998年参加多项国家自然科学基金课题(病毒基因等)研究;1995年参加中国科学院项目重组人白细胞介素-3中试生产工艺研究;2001年参加“973”课题进行人类肿瘤基因治疗的研究。
胡晓年博士主要研究方向为肿瘤基因表达调控与人体干细胞应用技术研究。多年从事肿瘤病因、肿瘤基因表达与调控、肿瘤基因治疗、基因工程药物和细胞治疗技术的研究与开发。曾主持国家“863”项目1项, “863”子课题负责人1项,参与“863”项目1项,参加多项国家自然科学基金等课题研究。构建了一种特异靶向肝细胞的基因治疗转运载体,和特异靶向肝癌细胞的“双开关”调控的“自杀基因”表达载体。主持内蒙古自治区科技创新引导奖励资金项目“干细胞产业化及临床应用”研究,参加内蒙古自治区科技引导奖励基金项目“人体干细胞治疗重大疾病的研究与应用”,主要从事人体干细胞分离、纯化、鉴定、储存、诱导分化和应用技术研究,参与组建了内蒙古干细胞应用技术研发平台、内蒙古干细胞产业基地和临床应用技术中心。曾获国家科技进步三等奖1次,卫生部科技进步奖2次。申请和获得国家发明专利9项,出版专著4部。
韩学海博士,北京京蒙高科干细胞技术有限公司副总裁, 1994年中国科学院生物物理研究所获得分子生物学博士,历任中科院电子学所传感技术国家重点实验室助理研究员(1987),清华大学副教授(1996),中国科学院生物物理研究所副研究员(1996),生物大分子国家重点实验室固定编制人员和独立课题组长,日本科学技术厅特别研究员(1999),中国科学院—英国皇家学会交换学者(1999),美国新泽西医科大学(UMDNJ)特邀研究员(2002),美国匹斯堡大学医学院和匹斯堡大学医学中心(UPMC)讲师,固定编制人员/faculty(2005)及美国国立卫生研究院R01课题独立执行人
? 韩学海博士具有丰富的多学科交叉专业知识背景,包括物理学、工程学、生物物理和生物化学、分子生物学、免疫学、基础医学等。从事干细胞相关产业研究与开发,国家科技攻关(2项)、重大(2项)、重点项目(2项)、美国国立卫生研究院项目3项。1990年获中国科学院科技进步三等奖,发表学术论文40余篇,获10余项发明专利授权。
竺 青博士,北京京蒙高科干细胞技术有限公司副总裁,2004年获加拿大McMaster大学病理与分子医学系医学博士,2006年在美国佛罗里达州奥兰多市获北美胃肠协会优秀论文奖 ,2007年 在获国际黏膜免疫大会资助,2008年在美国获 国家癌症所杰出中心优秀报告奖及美国联邦政府技术转化奖;2008年在美国马塞诸塞州波士顿市参加靶向免疫疗法和疫苗高峰会。 发现了Toll联合作用机制,对疫苗开发起到重要指导作用。精确设计新型口服抗HIV疫苗的接种策略。成为美国NIH重要的学科发展方向,从事干细胞与免疫学研究。侧重干细胞对免疫系统重建和免疫调节机制研究。研究干细胞治疗糖尿病并发症;研究肿瘤生物治疗和肿瘤免疫抑制机制。
竺青博士的主要学术成就包括肿瘤细胞免疫、肿瘤生物治疗、肠道黏膜免疫、天然免疫机制以及疫苗策略研究。他发现的Toll联合作用机制为疫苗研究和开发提供了全新的理论基础和应用依据,他阐明的远端跨黏膜免疫保护概念对于疫苗防治性传播性感染疾病具有重要指导意义。竺博士从事干细胞与免疫学的研究,侧重干细胞对免疫系统重建和免疫调节机制、干细胞治疗糖尿病及并发症、干细胞大规模制备和诱导分化等方面的研究与开发。参与和主持内蒙古自治区科技创新引导奖励资金项目,曾在J Clin Invest、PNAS、Immunity、 J Immunol、MucosalImmunol、Mol Immunol等重要国际期刊发表学术论文,申报有美国和国际专利各1项。
樊晓翔博士,北京京蒙高科干细胞技术有限公司项目部副总裁,2010毕业于德国Universit?t Duisburg-Essen, Deutschland, 主要研究方向为分子生物学与细胞生物学。攻读博士期间,主要从事DNA损伤后检控点激活与细胞信号传导通路研究,及科研项目的产业转化研究(同时从事符合GMP标准的蛋白纯化规程的研究、符合GMP标准的标准操作工艺的优化与建立等)。2002年以来,先后在荷兰Wageningen大学,德国Duisburg-Essen大学临床研究中心工作,主要进行控制DNA损失后修复蛋白与检控点的信号传导偶联机制,发现DNA损伤后蛋白焦点形成/残留与细胞周期激活的定量机制。曾在Radiation Research, Journal of Biotechnology,生物技术通讯,中国生物制品学杂志,中国酿造,等杂志上发表论文。
樊晓翔博士具体负责的项目为《规范化的CIK细胞治疗产业化研究》,项目实施目的在于建立适应中国国情的CIK细胞治疗服务的行业标准,并最终为国家制定相应的细胞治疗服务规范提供科学依据。其中,“高生物安全性的淋巴细胞分离液”正在申请国家专利。鉴于美国FDA对于细胞治疗产品安全性的高度关注、我国在此范畴的法规不健全的现状,此专利的产业实施将有助于我国政府监管机构弥补现有法规的不足。曾在北京生物制品研究所中试一室负责细胞因子类产品的开发,在德国Duisburg-Essen 大学,临床研究中心,参与一项联邦科研(BMBF)基金。在J Gen Virol,Radiation Res等杂志发表文章。
李定纲 博士 ,北京京蒙高科干细胞技术有限公司首席医学官,李定纲1982年毕业于南京医科大学,其后就职于北京首都医科大学附属北京友谊医院普外科,从事普外科临床、教学与科研工作。1990年至1995年赴美国约翰·霍普金斯大学(Johns Hopkins University School of Medicine)医学院肿瘤外科实验室从事博士后研究工作,个人的研究成果先后发表于美国JCI(临床研究杂志)、Surgery(外科杂志)、 Shock ( 休克 ),Circulation(循环杂志)等国际一流医学杂志。
李定纲博士 2004年调至北京海淀医院创建国内首家肿瘤基因治疗中心并任中心主任,主任医师。 2007年4月在北京燕化医院建立国内首家(也是世界首家)基因生物治疗与热疗的综合治疗中心,任肿瘤中心主任,首席医学专家,主任医师。四年来,李定纲主任医师在北 京海淀医院与北京燕化医院肿瘤基因治疗中心收治了大量来自中国各地的肿瘤患者,也吸引了来自美国、加拿大、墨西哥、巴拿马、德国、英国、丹麦、瑞典、挪威、荷兰、西班牙、罗马尼亚、希腊、土耳其、新加坡、马来西亚、印度、巴基斯坦、菲律宾、泰国、越南、香港等近40个国家与地区的300多位肿瘤患者,成 为新中国成立以来收治国际肿瘤病人最多的中国医院科室。 这一伟大医学成果得到国际肿瘤界和媒体的广泛关注。李定纲主任医师的医学成果, 自2005年5月意大利《自由报》率先刊载基因治疗中心报道后,先后有20多家国际媒体,如:全球顶级媒体之一的美国《商业周刊》、美国《华盛顿邮报》、 《美国哥伦比亚广播公司—CBS》、美国著名的风险投资杂志《Red Herring》、《德国经济周刊》、《加拿大国家电视台-CTV 》、《英国电视4台》、《德国电视2台》、《瑞典国家电视台》、《丹麦国家电视台》、《挪威电视台》、《土耳其国家电视台》《韩国国家电视台》等世界主流 媒体都对海淀医院和北京燕化医院的肿瘤基因治疗中心从不同角度做了大篇幅的正面报道,为中国医院在国际上赢得了荣誉。
李定纲主任医师现为国际冷冻外科学会会员,中国医药生物技术协会理事,世界疼痛医师协会中国分会理事,中国医药生物技术杂志编委,中国抗癌学会北京分会会员,中华医学会北京分会普外科学会会员等。

HIV。是指什么病啊??具体一点?梅毒用什么代号表示。有什么证壮啊???

1.HIV是艾滋病
人类免疫缺陷病毒
Human Immunodeficiency Virus(HIV)
1981年,人类免疫缺陷病毒在美国首次发现。该病毒破坏人体的免疫能力,导致免疫系统的失去抵抗力,而导致各种疾病及癌症得以在人体内生存,发展到最后,导致艾滋病(获得性免疫缺陷综合征)。在世界范围内导致了近1200万人的死亡,超过3000万人受到感染。
参见: 艾滋病
[编辑本段]一、生物学诊断
(一)形态结构
病毒呈球形,直径100~120nm,电镜下可见一致密的圆锥状核心,内含病毒RNA分子和酶(逆转录酶、整合酶、蛋白酶),病毒外层囊膜系双层脂质蛋白膜,其中嵌有gp120和gp41,分别组成刺突和跨膜蛋白。囊膜内面为P17蛋白构成的衣壳,其内有核心蛋白包裹RNA。
(二)基因结构及编码蛋白的功能
HIV基因组长约9.2~9.7kb,含gag、Pol、env、3个结构基因,及至少6个调控基因(Tat Rev、Nef、Vif、VPU、Vpr)并在基因组的5′端和3′端各含长末端序列。HIV LTR含顺式调控序列,它们控制前病毒基因的表达。已证明在LTR有启动子和增强子并含负调控区。
1.gag基因能编码约500个氨基酸组成的聚合前体蛋白,经蛋白酶水解形成P17,P24核蛋白,使RNA不受外界核酸酶破坏。
2.Pol基因编码聚合酶前体蛋白,经切割形成蛋白酶、整合酶、逆转录酶、核糖核酸酶H,均为病毒增殖所必需。
3.env基因编码约863个氨基酸的前体蛋白并糖基化成gp160,gp120和gp41。gp120含有中和抗原决定簇,已证明HIV中和抗原表位,在gp120 V3环上,V3环区是囊膜蛋白的重要功能区,在病毒与细胞融合中起重要作用。gp120与跨膜蛋白gp41以非共价键相连。gp41与靶细胞融合,促使病毒进入细胞内。实验表明gp41亦有较强抗原性,能诱导产生抗体反应。
4.TaT 基因编码蛋白可与LTR结合,以增加病毒所有基因转录率,也能在转录后促进病毒mRNA的翻译。
5.Rev基因产物是一种顺式激活因子,能对env和gag中顺式作用抑制序(Cis-Acting repression sequance,Crs) 去抑制作用,增强gag和env基因的表达,以合成相应的病毒结构蛋白。
6.Nef基因编码蛋白P27对HIV基因的表达有负调控作用,以推迟病毒复制。该蛋白作用于HIv cDNA的LTR,抑制整合的病毒转录。可能是HIV在体内维持持续感集体所必需。
7.Vif基因对HIV并非必不可少,但可能影响游离HIV感染性、病毒体的产生和体内传播。
8.VPU基因为HIV-1所特有,对HIV的有效复制及病毒体的装配与成熟不可少。
9.Vpr基因编码蛋白是一种弱的转录激活物,在体内繁殖周期中起一定作用。
HIV-2基因结构与HIV-1有差别:它不含VPU基因,但有一功能不明VPX基因。核酸杂交法检查HIV-1与HIV-2的核苷酸序列,仅40%相同。env基因表达产物激发机体产生的抗体无交叉反应。
(三)培养特性
将病人自身外周或骨髓中淋巴细胞经PHA刺激48~72小时作体外培养(培养液中加IL2)1~2周后,病毒增殖可释放至细胞外,并使细胞融合成多核巨细胞,最后细胞破溃死亡。亦可用传代淋巴细胞系如HT-H9、Molt-4细胞作分离及传代。
HIV动物感染范围窄,仅黑猩猩和长臂猿,一般多用黑猩猩做实验。用感染HIV细胞或无细胞的HIV滤液感染黑猩猩,或将感染HIV黑猩猩血液输给正常黑猩猩都感染成功,边续8个月在血液和淋巴液中可持续分离到HIV,在3~5周后查出HIV特异性抗体,并继续维持一定水平。但无论黑猩猩或长臂猿感染后都不发生疾病。
(四)抵抗力
HIV对热敏感。56℃30分失去活性,但在室温保存7天,仍保持活性。不加稳定剂病毒-70℃冰冻失去活性,而35%山梨醇或50%胎牛血清中-70℃冰冻3个月仍保持活性。对消毒剂和去污剂亦敏感,0.2%次氯酸钠0.1%漂白粉,70%乙醇,35%异丙醇、50%乙醚、0.3%H2O20.5%来苏尔处理5′能灭活病毒,1%NP-40和0.5%triton-X-100能灭活病毒而保留抗原性。对紫外线、γ射线有较强抵抗力。
[编辑本段]二、病毒性与免疫性
(一)传染源和传播途径
HIV感染者是传染源,曾从血液、精液、阴道分泌液、眼泪、乳汁等分离得HIV。传播途径有:
1.性传播:通过男性同性恋之间及异性间的性接触感染。
2.血液传播:通过输血、血液制品或没有消毒好的注射器传播,静脉嗜毒者共用不经消毒的注射器和针头造成严重感染,据我国云南边境静脉嗜毒者感染率达60%。
3.母婴传播:包括经胎盘、产道和哺乳方式传播。
(二)致病机制
HIV选择性的侵犯带有CD4分子的,主要有T4淋巴细胞、单核巨噬细胞、树突状细胞等。细胞表面CD4分子是HIV受体,通过HIV囊膜蛋白gp120与细胞膜上CD4结合后由gp41介导使毒穿入易感细胞内,造成细胞破坏。其机制尚未完全清楚,可能通过以下方式起作用:
1.由于HIV包膜蛋白插入细胞或病毒出芽释放导致细胞膜通透性增加,产生渗透性溶解。
2.受染细胞内CD-gp120复合物与细胞器(如高尔基氏体等)的膜融合,使之溶解,导致感染细胞迅速死亡。
3.HIV感染时未整合的DNA积累,或对细胞蛋白的抑制,导致HIV杀伤细胞作用。
4.HIV感染细胞表达的gp120能与未感染细胞膜上的CD4结合,在gp41作用下融合形成多核巨细胞而溶解死亡。
5.HIV感染细胞膜病毒抗原与特异性抗体结合,通过激活补体或介导ADCC效应将细胞裂解。
6.HIV诱导自身免疫,如gp41与T4细胞膜上MHCⅡ类分子有一同源区,由抗gp41抗体可与这类淋巴细胞起交叉反应,导致细胞破坏。
7.细胞程序化死亡(programmed cell death ):在艾滋病发病时可激活细胞凋亡 (Apoptosis) 。如HIV的gp120与CD4受体结合;直接激活受感染的细胞凋亡。甚至感染HIV的T细胞表达的囊膜抗原也可启动正常T细胞,通过细胞表面CD4分子交联间接地引起凋亡CD+4细胞的大量破坏,结果造成以T4细胞缺损为中心的严重免疫缺陷,患者主要表现:外周淋巴细胞减少,T4/T8比例配置,对植物血凝素和某些抗原的反应消失,迟发型变态反应下降,NK细胞、巨噬细胞活性减弱,IL2、γ干扰素等细胞因子合成减少。病程早期由于B细胞处于多克隆活化状态,患者血清中lg水平往往增高,随着疾病的进展,B细胞对各种抗原产生抗体的功能也直接和间接地受到影响。
艾滋病人由于免疫功能严重缺损,常合并严重的机会感染,常见的有细胞(鸟分枝杆菌)、原虫(卡氏肺囊虫、弓形体)、真菌(白色念珠菌、新型隐球菌)、病毒(巨细胞病毒、单纯疱疹病毒,乙型肝炎病毒),最后导致无法控制而死亡,另一些病例可发生Kaposis肉瘤或恶性淋巴瘤。此外,感染单核巨噬细胞中HIV呈低度增殖,不引起病变,但损害其免疫功能,可将病毒传播全身,引起间质肺炎和亚急性脑炎。
HIV感染人体后,往往经历很长潜伏期(3~5年或更长至8年)才发病,表明HIV在感染机体中,以潜伏或低水平的慢性感染方式持续存在。当HIV潜伏细胞受到某些因素刺激,使潜伏的HIV激活大量增殖而致病,多数患者于1-3年内为死亡。
(三)免疫性
HIV感染后可刺激机体生产囊膜蛋白(Gp120,Gp41)抗体和核心蛋白(P24)抗体。在HIV携带者、艾滋病病人血清中测出低水平的抗病毒中和抗体,其中艾滋病病人水平最低,健康同性恋者最高,说明该抗体在体内有保护作用。但抗体不能与单核巨噬细胞内存留的病毒接触,且HIV囊膜蛋白易发生抗原性变异,原有抗体失去作用,使中和抗体不能发的应有的作用。在潜伏感染阶段,HIV前病毒整合入宿主细胞基因组中,不被免疫系统识别,逃避免疫清除。这些都与HIV引起持续感染有关。
[编辑本段]三、微生物学诊断
检测HIV感染者体液中病毒抗原和抗体的方法,操作方便,易于普及应用,其中抗体检测尤普通。但HIv P24抗原和病毒基因的测定,在HIV感染检测中的地位和重要性也日益受到重视。
(一)抗体检测
主要有酶联免疫吸附试验(ELISA)和免疫荧光试验(IFA)。ELISA用去污剂裂解HIV或感染细胞液提取物作抗原,IFA用感染细胞涂片作抗原进行抗体检测,如果发现阳性标本应重复一次。为防止假阳性,可做Western blot (WB,蛋白印迹法)进一步确证。
WB法是用聚丙烯酰胺凝胶电泳将HIV蛋白进行分离,再经传移电泳将不同蛋白条带转移于硝酸纤维膜上,加入病人血清孵育后,用抗人球蛋白酶标抗体染色,就能测出针对不同结构蛋白抗体,如抗gp120、gp41、P24抗体,特异性较高。
(二)抗原检测
用ELISA检测P24抗原,在HIV感染早期尚未出现抗体时,血中就有该抗原存在.由于P24量太少,阳性率通常较低。现有用解离免疫复合物法或浓缩P24抗原,来提高敏感性。
(三)核酸检测
用PCR法检测HIV基因,具有快速、高效、敏感和特异等优点,目前该法已被应用于HIV感染早期诊断及艾滋病的研究中。
(四)病毒分离
常用方法为共培养法,即用正常人外周血液分离单个核细胞,加PHA刺激并培养后,加入病人单个核细胞诊断及艾滋病的研究中。
[编辑本段]四、艾滋病毒的特点
HIV是艾滋病毒的英文缩写,它的特点主要为以下几点:
1、主要攻击人体的T淋巴细胞系统。
2、一旦侵入机体细胞,病毒将会和细胞整合在一起终生难以消除。
3、病毒基因变化多样。
4、广泛存在于感染者的血液、精液、阴道分泌物、唾液、尿液、乳汁、脑脊液、有神经症状的脑组织液,其中以血液、精液、阴道分泌物中浓度最高。
5、对外界环境的抵抗力较弱,对乙肝病毒有效的消毒方法对艾滋病病毒消毒也有效。
6、感染者潜伏期长,死亡率高。
7、艾滋病病毒的基因组比已知任何一种病毒基因都复杂。
[编辑本段]五、“窗口期”
人体感染了艾滋病病毒后,一般需要2周时间才能逐渐产生病毒抗体。“窗口期”是指从人体感染艾滋病毒后到外周血液中能够检测出病毒抗体的这段时间,一般为2周—3个月。在这段时间内,血液中检测不到病毒抗体,但是人体具有传染性。只有等到“窗口期”过后,血液中才会有足够数量的艾滋病毒抗体可以检测出来。但是不能忽视的是,不同个体对艾滋病毒的免疫反应不一,抗体出现的时间也不一致,尤其对近期具有高危行为的人,一次实验结果阴性不能轻易排出感染,应隔2—3个月再检查一次。
[编辑本段]六、提示可能患有艾滋病的症状
艾滋病的常见症状有:
(1)持续广泛淋巴结肿大,特别是颈、腋和腹股沟淋巴结。淋巴结肿大直径1厘米左右,坚硬、不痛、可移动,时间超过三个月。
(2)数周以来不明原因发热和盗汗。
(3)数周以来出现难以解释的严重疲乏。
(4)食欲下降,2个月内体重减轻超过原体重的10%。
(5)数周以来出现不明原因的慢性腹泻,呈水样,每日10次以上。
(6)气促、干咳数周。
(7)皮肤、口腔出现平坦和隆起的粉红、紫红色大斑点,不痛不痒。
(8)咽、喉部出现白斑。男性阴部出现鳞屑性斑,痒。 女性肛门瘙痒,阴道痒,白带多。
(9)头痛、视线模糊。 当出现上面三个以上症状又有不洁性接触史时,应及时去医院检查。
[编辑本段]七、艾滋病病毒感染人体后的症状
艾滋病病毒感染早期,亦称急性期,多数无症状,但有一部分人在感染数天至3个月时,出现像流感或传染性单细胞增多症样症状,如发热,寒战、关节疼、肌肉疼、头疼、咽痛、腹泻、乏力,夜间盗汗和淋巴结肿大,皮肤疹子是十分常见的症状,这之后,进入无症状感染期。
[编辑本段]八、艾滋病病潜伏期或无症状期的时长
艾滋病病毒侵入人体后一部分人出些流感样或传染性单核细胞增多症样症状,一些人一直无症状,直接进入无症状期。艾滋病潜伏期的长短个体差异极大,这可能与入侵艾滋病病毒的类型、强度、数量、感染途径以及感染者自身的免疫功能、健康状态、营养情况、年龄、生活和医疗条件、心理因素等有关。一般为6-10年,但是有大约5-15%的人在2-3年内就进展为艾滋病,我们称为快速进展者,另外还有5%的患者其免疫功能可以维持正常达12年以上,称为长期不进展者。
[编辑本段]九、艾滋病病毒的消毒方法
艾滋病病毒在外界抵抗力较弱,比乙型肝炎病毒的抵抗力低得多。所以,使用对乙肝病毒的消毒和灭活方法完全可以对付艾滋病病毒。艾滋病病毒有不耐酸、较耐碱、对紫外线不敏感等特点,酒精对其具有较好的灭活作用。国际卫生组织推荐对艾滋病病毒灭活加热100℃持续20分钟,效果较理想。艾滋病病毒的消毒主要是针对被艾滋病病毒感染者和艾滋病病人的血液、体液污染的医疗用品、生活场所等。例如,辅料、纱布、衣物等。对艾滋病病毒的消毒可以根据消毒物品选择适当的物理方法或化学方法。需要重复使用的物品可用煮沸或高压蒸汽消毒。不宜煮沸的物品可用2%戊二醛、75%酒精等进行消毒。
[编辑本段]十、可以做HIV抗体检测的机构
各省、自治区、直辖市的疾病控制中心(或卫生防疫站)、国境卫生检疫机构、各级血站和血液中心、具备HIV抗体实验室检测初筛资格的医院,均可从事HIV抗体检测,各省、市、区的其他具体检测机构可向上述单位询问。目前,大部分省市都有一个确认实验室,一般设在省级疾病预防与控制中心,负责本省阳性标本的复核和确认工作。上述机构在提供HIV抗体检测同时也提供有关艾滋病方面的咨询,包括电话咨询、信函咨询和门诊咨询等。
[编辑本段]十一、检测结果不确定的原因
(1) 感染还处于窗口期:从HIV进入体内到检测这段时间还不够长,因此血清还没有形成典型的抗体反应;
(2) 艾滋病进展到终末期,抗体水平下降;
(3) 存在HIV2型或其他亚型(例如O亚型),而所使用的检测试剂无法检测;
(4) 其他非病毒蛋白抗体的交叉反应:自身免疫性疾病、某些恶性疾病、怀孕、输血或器官移植等情况下,身体可以产生一些抗体,其反应与HIVP24核心蛋白抗体引起的反应很相似;
(5) 以前接种过HIV(试验性)疫苗。
出现不确定结果,应建议其3个月后复查。
[编辑本段]十二、艾滋病存活时间
艾滋病患者的存活时间长短与其被感染的亚型病毒种类有很大的关系。艾滋病患者的平均存活时间因被感染的亚型种类不同而有很大的差异,尽管这些研究对象被感染的病毒数量基本上是一样的。A亚型病毒感染者的平均存活时间为8.8年,而D亚型病毒感染者的平均存活时间降至为6.9年,而D亚型和A亚型病毒的混合感染者的存活时间更短,平均只有5.8年。
一般在室温条件下血液中的HIV可存活15d
[编辑本段]十三、艾滋病病毒存活的条件
HIV对热敏感,在56℃下经30分钟可灭活,50%乙醇或乙醚、0.2%次氯酸钠、0.1%家用漂白粉,0.3%双氧水、0.5%来苏处理5分钟即可灭活,但对紫外线不敏感。
在室温合适的液体环境中可存活15天以上。
[编辑本段]十四、艾滋病毒藏身之所
长期以来,医学界在临床治疗时发现,所有接受强化治疗的艾滋病病毒携带者在停止治疗后身体中很快又重新出现艾滋病病毒,并由此推断在感染者的机体中不但存在艾滋病病毒的藏身之所,而且机体的免疫系统难以对其进行有效控制。
为解开这一难题,法国科学家进行了大量试验。结果发现,肠淋巴结为艾滋病病毒提供了一个绝好的保护屏障,不但艾滋病病毒检测呈阳性者体内的该病毒无法被彻底消灭,一些感染艾滋病病毒10年后血检仍为阴性者的肠淋巴结中也藏匿着艾滋病病毒。
科学家经过进一步研究发现,肠淋巴结中的T-CD8淋巴细胞(细胞毒素T淋巴细胞)活力较差,其他组织中的这种被称为杀手的淋巴细胞通常能够消灭被感染的细胞,控制病毒,但肠淋巴结中的这种淋巴细胞缺乏这一能力,从而导致艾滋病病毒在其中藏身,并逐渐扩散到其他器官,使病情加重。
随后,研究人员证实导致肠淋巴结中T-CD8淋巴细胞功能缺损的是TGF-β细胞因子,正是它抑制了T-CD8淋巴细胞的活性,导致其早衰。
法国科学家表示,他们的研究为彻底战胜艾滋病提供了新思路,比如抑制TGF-β细胞因子,修复功能受损的T-CD8淋巴细胞,以及加强针对肠淋巴结的治疗等。这也将是他们下一步的主攻课题。
[编辑本段]十五、艾滋病疫苗研制
据《科学》杂志报道,2007年底,艾滋病疫苗研究领域的科学家们只能带着沉重的心情迈向新的一年。9月中旬,默克制药公司宣布,其耗时10年研制的艾滋病疫苗中期临床试验失败;9月底,美国国立卫生研究院(NIH)在最后一刻决定:停止一项耗资达1.3亿美元的艾滋病疫苗试验。艾滋病疫苗研究接连受到重创。
据最新出版的《科学》杂志报道,该疫苗由NIH研究人员研制,NIH停止这项试验的原因是:该试验类似于默克公司疫苗的临床试验,可能会增加部分人感染艾滋病病毒(HIV)的风险。
12月底,NIH艾滋病疫苗研究小组委员会成员在NIH位于马里兰州贝塞斯达的总部开会,讨论NIH疫苗的未来命运。尽管本次会议没有形成最后决定,但成员们还是达成共识:重新设计一套方案,继续进行这项艾滋病疫苗试验,但要尽量减少受试者受伤害的风险。
“每个人似乎都认为我们的产品(与默克公司的产品相比)有足够多的不同之处,可以进行下一步试验。”NIH艾滋病项目负责人佩吉·约翰斯顿说,“现在的问题是:应该设计什么样的试验?这样的设计切实可行吗?”
资料显示,目前全世界大约有4000万人感染HIV,如果按目前的感染速度计算,未来5年中还将有3000万人感染。也正是由于艾滋病在全球的蔓延,使得艾滋病疫苗市场越来越被制药企业看好。数据分析表明,2006年全球艾滋病疫苗市场的容量为100亿美元。
默克公司花了10年时间研制了一种名为V520的艾滋病疫苗。2004年,默克公司、美国国家过敏和传染性疾病研究所及一个名为HIV疫苗联盟的学术机构组成团队,开始实施一项名为“步伐”的V520全球性人体试验;今年9月18日,默克制药公司和合作方共同宣布,对V520进行的临床试验失败,因为该试验的一项中期安全分析显示,该疫苗既无法保护志愿者免遭致命病毒的侵袭,也不能减少HIV感染者体内的病毒数量。
对艾滋病疫苗研究领域来说,这是一场灾难性的打击,因为默克的疫苗被认为是最有希望的艾滋病疫苗。艾滋病疫苗试验网络发言人莎拉·亚历山大说,对制药业来说,这是一个悲哀的日子,因为默克公司的疫苗已显示,它能够激发免疫系统。
然而,打击还在继续。NIH的艾滋病疫苗是由NIH疫苗研究中心的加里·勒贝尔小组研制的,与默克公司的疫苗一样,这两种疫苗都是用感冒病毒作为载体,将HIV的基因送进受试者体内。腺病毒5型(Ad5)是一种非常流行的感冒病毒,它的亚型超过50种,且变化很快,部分地区可能有1/3的人感染上这种病毒,有些地方甚至每个人都曾被感染过。
在默克疫苗的试验里,具有高水平Ad5抗体的受试者在接种了艾滋病疫苗后变得更容易感染HIV。研究人员现在还没有弄明白这一过程的机理,也不清楚新发现是否具有统计学上的重要性。但是,为了预防万一,NIH艾滋病疫苗小组委员会要求,在艾滋病疫苗研究中心的试验中排除对Ad5有抗体的人。
哥伦比亚大学的斯科特·汉默是NIH疫苗研究中心艾滋病疫苗试验项目负责人,他最初计划在美国和非洲进行这项试验,受试者有8500多人。现在,汉默小组的一位成员解释说,他们认为在美国和非洲进行一项只有2000~3300名受试者的试验是比较稳妥的,而且受试者必须对Ad5抗体呈阴性,受试者将包括异性恋者和男同性恋者。
NIH艾滋病疫苗研究小组委员会的部分成员提出,试验能否集中于更狭窄的范围,比如美国的男同性恋者。委员会成员之一、NIH的疫苗专家Jeffrey Lifson警告说,默克公司的结果正在造成混乱,部分原因在于疫苗是在如此多的不同人群和地区进行试验。“我真的很担心……这是否表明我们能够作好这项研究。”
大卫·沃特金斯是威斯康星大学的灵长类动物研究专家,他完全反对作这样的试验,因为即使不考虑安全因素,对猴子的试验已表明NIH疫苗研究中心的试验将会失败。他对《科学》杂志说:“我不明白他们为什么还要这样做。科学似乎真的被忽略了。”美国过敏和传染性疾病研究所所长安东尼·费希认为,这个领域还没有“奢侈”到足以等到证明来自猴子研究的数据是有效的,这需要10年的时间。但费希没有在小组会上谈自己的观点,他解释说:“我准备回去作最后的决定,我不想早于任何人得出结论。”
《科学》的文章指出,2008年1月,哥伦比亚大学的小组将向NIH的这个小组委员会报告重新设计的方案,届时,费希将宣布NIH疫苗研究中心的艾滋病疫苗的命运。
我国艾滋病疫苗还要等多久?
2000年,在中国科学院第11次院士大会上,中国科学院院士曾毅报告说,由于病毒变异太快,有效的艾滋病疫苗在今后10年内不会问世。
2006年,在中科院第13次院士大会学术会上,曾毅院士再次报告了“艾滋病的预防与控制”。防治艾滋病的疫苗还要等多久?曾毅院士没有给出答案,任何科学家也很难给出答案。
人类研究艾滋病疫苗已有20余年了,现国际上已进行了120多个艾滋病疫苗的临床测试,测试疫苗包括重组病毒载体疫苗、DNA疫苗、蛋白/多肽疫苗以及不同疫苗的组合。无论是艾滋病抗体疫苗还是细胞免疫疫苗均尚处于早期阶段,所研制的疫苗在理论上均难以克服艾滋病毒所带来的挑战。因为艾滋病毒I型至少包括9个亚型和众多的重组型(我国的主要流行株即是B`/C重组型)。而且,病毒可不断通过遗传变异,逃逸免疫系统的识别与控制。研发有效艾滋病疫苗,已成为人类面临的最重大挑战之一。
从21世纪始,各国政府和国际组织纷纷加大了对艾滋病疫苗研究的经费投入,形成了全球合作攻关的良好态势。近年,很多大型制药与疫苗公司也纷纷加入或加大了艾滋病疫苗研发的投资。
在发展中国家中具备疫苗研究经验、生产条件、评价队伍和管理体系的国家十分有限,国际机构普遍认为中国是最有潜力的合作伙伴之一。第一个由长春百克生物公司与美国霍普金斯大学合作研制的DNA和安卡那株痘苗病毒艾滋病疫苗已于2005年3月正式启动I期临床试验,疫苗沿用国外成熟的技术平台,采用DNA与非复制型重组安卡那株痘苗病毒为载体,插入我国流行株CRF08—BC来源的免疫原基因进行联合免疫。研究已基本结束,标志着我国境内T细胞疫苗临床试验的开始。
此外,我国在复制型和非复制型天坛株痘苗疫苗、腺病毒载体疫苗、腺病毒相关病毒载体疫苗、仙台病毒载体疫苗、多肽表位疫苗、蛋白疫苗等方面的艾滋病疫苗临床前研究上均取得一定的进展。
曾毅院士谈到,尽管我国HIV疫苗研究取得了一定的成绩,但从总体上说,在国际上影响力有限,试验的疫苗均没有我国的自主知识产权。造成这种现状的原因,包括上游研发资金的投入严重不足、研究创新不够、队伍间缺乏合作、疫苗研发上下游脱节等。
[编辑本段]十六、HIV抗体
HIV只袭击特定的细胞。不同的细胞表面有着不同的蛋白质,这些称为“受体”的蛋白质是细胞身份的标识,好像士兵不同颜色和式样的盔甲。HIV进入免疫细胞、摧毁人体免疫系统的主要通道,是称为CD4和CCR5的两个受体。CCR5-△32变异,就是编码CCR5受体的基因发生的一个微小变异———丢失了32个碱基对。其结果是形成一种较小的蛋白质,它并不位于免疫细胞表面。这样,大多数HIV毒株就失去门路,无法感染细胞。
一般地,人体中每个基因都有两个副本。拥有一个CCR5-△32变异副本,人对HIV的抵抗力就会增强,即使受到感染,发病过程也会比普通人缓慢。如果有两个变异副本,就基本上对HIV免疫了(并非完全免疫,有两个变异副本而仍死于艾滋病,这样的例子虽然罕见但的确存在,有的HIV毒株可能并不需要以CCR5为通道)。
这个变异对HIV以及古代瘟疫的抵抗力,促使科学家调查了它在不同人群中出现的频率。结果显示,非洲土著、东亚、印度等人群里都不存在这个变异,它仅仅存在于欧洲人和居住在美洲的欧洲移民后裔中。也就是说,它是欧洲人特有的。在欧洲不同地区,它出现的频率也不一样,其中以北欧高达14%,地中海沿岸则仅为2%。平均说来,约有10%的欧洲人拥有一个变异副本,1%的人拥有两个副本。
CCR5-△32刚被发现,制药企业就纷纷试着模拟它的作用,来制造新的抗艾滋病疫苗或药物。很多拥有两个变异副本的人健康地活着,似乎显示该变异并无有害影响,这一点尤其有利。不过,它究竟从何而来?这个变异仅在欧洲人中广泛存在,对此的合理解释是,在历史上的欧洲,拥有这个变异的人有更大的机会生存下来、留存后代。它是偶然出现的,起初只存在于极少数人身上,但某种严酷事件产生了强大的“选择压力”,使得这个能带来一定生存优势的变异在人群中频率不断升高。
这个变异可以增进人对HIV的抵抗力,但据估计它有几百年甚至上千年历史了。那么历史上有什么疾病足以产生这样的压力?流感、麻疹、猩红热、伤寒、霍乱……许多传染病袭击过欧洲,但致死率和流行程度足够高的,目前只有两个候选者:黑死病和天花。

梅毒介绍:http://baike.baidu.com/view/23940.htm

细胞感染HIV后为什么能表达HIV的gp120

  现在,AIDS已成为全球最严重的感染性疾病和非洲地区人口死亡的首要原因。据NUAIDS/WHO最新统计,截至2005年底,全球约有4030万HIV-1型和HIV-2型感染者,新感染病例大490万,因AIDS死亡病例有310万。HIV感染人数逐年增加,流行速度加快,严重影响了人类健康,还给家庭、社会和国家经济带来了沉重的负担,严重威胁全球经济的发展。因此,控制HIV的蔓延成为当务之急。抗高效反转录病毒疗法(HAART)的应用能控制病毒血症和延缓AIDS的进程,但药物的毒副作用、坚持长期用药的困难、病毒耐药株的出现以及高昂的价格都限制了其应用。因此,发展安全、有效、价格低廉的疫苗成为控制HIV流行和疾病进展的有重要价值方法之一。

  1、HIV的概况

  HIV在病毒学上属于逆转录病毒科慢病毒属,已发现有HIV-1和HIV-2两型,HIV-1是引起全球爱滋病流行的病原体,现在HIV疫苗的研究主要针对此型。

  HIV的基因组由两条单股正链RNA组成,主要包括3个结构基因和6个调节基因编码区:gag基因主要编码核心蛋白,如p24蛋白;pol基因编码病毒复制所需要的酶类;env基因主要编码包膜糖蛋白gp160,并进一步裂解为gp120和gp41两种包膜蛋白;6个调节基因主要有tat,rev,nef,vif,vpu,vpr,这些均与病毒的复制调节有关。HIV是一种高度变异的病毒,变异主要集中在env基因和nef基因,造成gp120包膜蛋白的抗原变异,从而逃避宿主的免疫应答。[2]

  HIV感染宿主细胞,主要是通过其包膜蛋白刺突(gp120)与CD4分子结合,暴露了gp41的疏水段,导致病毒包膜与细胞膜发生融合,使病毒核心被导入细胞。另外,要产生有效的融合,还需要细胞上CXCR4和CCR5两种辅助受体的参与。

  2、HIV-1疫苗相关免疫应答

  诱导机体产生中和抗体、刺激细胞毒性T淋巴细胞(CTL)产生融细胞效应及CD4+T细胞和CD8+T细胞产生可溶性细胞因子时抗病毒的主要效应机制。[2][3][4]

  2.1 体液免疫应答

  HIV感染后,能刺激B细胞转化为浆细胞并分泌中和性抗体,这种抗体在血清及黏膜分泌五中能维持较高的滴度[2],可阻止病毒感染宿主细胞。另外,抗体还能调动包括补体系统、中性粒细胞和单核细胞在内的炎症系统,在中和抗体不能直接中和病毒时,炎症系统调动其他抗体发挥功能。若患者的抗体能中和自身病毒,则进展到AIDS病程较长,孕妇传播病毒给胎儿的机会也较少[5]。抗体的这些功能使得在早期的HIV疫苗研制的重点集中在诱导中和抗体方面。然而,针对HIV包膜蛋白而激发的中和抗体的免疫应答功能非常有限[6],这可能与病毒包膜的高度变异性而逃避宿主免疫应答有关,也可能与中和抗体只能中和实验室适应株而对从哺乳动物中分离的原始株系没有效果有关。但在HIV志愿者身上进行II期临床实验证明,单克隆抗体的单独或组合使用对HIV原始株有一定的中和作用。这些突破性进展为寻找能诱导广泛中和抗体的抗原提供了合理的研究基础。[5]

  2.2 细胞免疫应答

  CD8+CTL:CD8+CTL通过T细胞受体(TCR)与提呈MHC一类分子中的肽表位相互作用而识别病毒感染细胞,并产生穿孔素和端粒酶,诱导细胞溶解及细胞程序性死亡。活化的CD8+CTL细胞也能通过上调FasL、分泌INF-a、TNF-a及其他可溶性因子抑制病毒[2]。CTL反应在限制病毒感染方面的作用已在人类和非人灵长类动物实验中得到证实[7]。在原发HIV感染者中,外周血HIV特异性CD8+T细胞免疫应答强烈,并与外周循环中的HIV病毒载量呈负相关[5]。

  CD4+T细胞:通过产生细胞因子来辅助CD8+CTL及细胞,抑制HIV感染,持续病毒感染的动物模型中,CD4+T细胞的长期支持是维持较强的CD8+CTL应答的关键,在感染晚期缺乏较强的HIV特异性CD+4细胞应答是造成HIV特异性下降的原因之一。[5]

  自然杀伤细胞(NK细胞):它们能直接杀伤病毒感染细胞,通过Fc受体CD16可介导抗体依赖性细胞介导的细胞毒作用[5]。HIV病毒血症的水平与NK细胞抑制HIV复制的能力成负相关,这种能力是由分泌的趋化因子(包括巨噬细胞炎症蛋白MIP-1A,MIP-1P和RANTES等)来调节的,它们抑制HIV-1通过CCR-5进入细胞内[8]。

  3. HIV疫苗

  研究HIV疫苗的主要目标在于抑制病毒进入过程和和病毒的复制.一种理想的疫苗是既能诱导机体强烈而持久的体液免疫应答以阻止病毒的入侵,同时也能诱导细胞免疫应答从而破坏病毒感染细胞以控制病毒复制.现在HIV疫苗的研究也主要从这两方面着手.

  3.1 灭活疫苗和减毒活疫苗

  灭活疫苗曾成功地用于脊髓灰质炎流感和伤寒等疫苗的研究,具有安全,无感染性,无毒,也不致癌等优点.根据HIV灭活疫苗的构想,将整个病毒颗粒出现在机体的免疫系统中,病毒不感染和复制,但由于HIV基因组有整合与细胞DNA的可能,而限制了其应用[4]。病毒减毒活疫苗是由减毒的活病毒组成,仍保留有复制的能力,但没有致病力。这种减毒活疫苗注入机体后,能刺激机体产生很强的细胞免疫应答和体液免疫应答。但如果宿主免疫力低下,宿主免疫应答不能根除局部病毒疫苗感染,这将导致病毒的全身性感染。出于安全考虑,HIV减毒活疫苗一般不使用[9]。

  3.2 重组亚单位疫苗

  这种疫苗了主要是利用病毒的单一蛋白制成,研究得最多的是HIV膜糖蛋白。HIV感染宿主细胞,主要是通过其包膜糖蛋白gp120与CD4+T细胞结合而使细胞感染HIV。因此,利用病毒糖蛋白gp120作为疫苗,能刺激机体产生抗gp120蛋白的中和抗体,从而阻止病毒入侵。但是,HIV能以非常复杂的方式逃避那些能与病毒外膜分子特定域结合的抗体。而且,病毒外膜分子是高度糖基化的蛋白质,巨大的糖分子逃避了大多数的蛋白抗原位点[9]。在美国(AIDSVA B/B)和泰国(AIDSAX B/E)进行的III期临床试验结果也显示单独利用gp120疫苗不能保护机体免受感染[10]。但这也为以后的疫苗研究提供了宝贵的经验。

  3.3 活载体疫苗

  活载体疫苗主要是指将基因工程亚单位插入有复制能力的活载体病毒中,并导入人体内进行表达。经改造的活载体主要有牛痘苗、卡介苗、脊髓灰质炎苗以及腺病毒、禽流感病毒等。其主要的优点在于载体复制期间,HIV抗原能通过天然的方式提呈给免疫系统,从而诱导广泛的细胞免疫和体液免疫,因而受到国内外研究者的广泛关注。目前多应用减毒的牛痘病毒(NYVAC)和修饰的痘病毒(MVA)作为载体,免疫机体后可显著增加CD4、CD8 T细胞的数量。NYVAC—HIV一1一C亚型重组疫苗正进行I期临床试验 。最近研究发现,腺病毒5型和HIV一1 Gag构建的重组疫苗可成功诱导恒河猴的细胞免疫反应,并延缓感染后疾病的进展,并且,在志愿者人体中可诱导很强的细胞免疫反应[11]。

  3.4 核酸疫苗

  这是90年代发展起来的一种新型疫苗,主要得益于成熟的今音工程技术和多样的载体系统转移技术。它可以在机体细胞内表达抗原,具有较好的免疫原性。这些抗原在靶细胞内以天然的方式合成,加工并提呈给免疫系统,从而有利于中和抗体的产生和诱导较强的CTL反应。同时还可以制成多价疫苗,易于改造以适用于流行株,而且易于制备和保存,特别适合于发展中国家。HIV核酸疫苗的研究表明,它除了可诱发特异的中和抗体和记忆性CD8+CTL反应以外,改造后也可以诱发黏膜免疫[12]。细胞因子和HIV的融合基因所构造的核酸疫苗,其表达的融合蛋白,除了具本身的生物活性外,还能将抗原靶向免疫活性细胞[16]。免疫治疗性的HIV核酸疫苗的I期人体试验已经显示具有良好的安全性,而且部分病人可诱发HIV特异性CTL反映[13]。这些都充分显示了核酸疫苗的发展前景。

  3.5 其他类型的HIV疫苗

  HIV的一条主要传播途径是性接触。因此,阻断这一传播途径的疫苗将能极大的减少HIV的感染率。马里兰州巴尔的摩市人类滤毒研究所披露了一项口服HIV疫苗的计划[14],它主要是利用减毒沙门氏菌作为载体携带HIV基因,而沙门氏菌可刺激黏膜产生很强的免疫应答,而该菌细胞壁破裂时释放出HIV DNA,刺激机体产生T淋巴细胞,以便识别和杀伤被HIV感染的宿主细胞,从而防止HIV的性传播。不论其成功与否,都为HIV疫苗的研究提出了一条崭新的途径。

  另外,也有报道表明,使用自身固有的一种野生型病毒作为“疫苗”(自体疫苗)可诱发由T细胞介导的HIV特异性免疫应答,这可能是通过树枝状细胞(DC)出现和幼稚T细胞的激活而引起野生型病毒的表达,而诱导T细胞免疫保护。一种称为Derma Vir的DNA疫苗便是模拟DC中的野生型病毒的表达而设计的,以便重新产生自体疫苗的免疫效应[15]。

  HIV联合疫苗是以一种免疫原初次接种和不同免疫原加强的初免-加强联合免疫策略。随着HIV疫苗研制的深入,越来越多的研究者认识到结合两种或多种不同的疫苗能诱导更广泛、更强烈的免疫反应。正进行的II期临床试验多数采用初免-加强免疫方式[3]。用HIV env DNA初免,再用HIV env DNA和Env蛋白加强,可在非人类灵长类动物中诱导高滴度的中和抗体产生保护作用[18]。

  4.HIV疫苗研究的展望

  随着分子生物学,免疫学,病毒学等基础研究突飞猛进的发展,研究者将构建许多新的HIV疫苗,这些疫苗能诱导广泛而强烈的体液免疫而阻止病毒进入,预防感染,同时也诱导广泛的细胞免疫以控制病毒的复制,从而稳定机体内环境.

  从目前的研究结果看来,许多疫苗的试验解雇并不理想,但为以后的疫苗研究积累了宝贵的经验.或者可以从多种途径改善疫苗的免疫效果:

  (1)改进包膜抗原,使其内部的中和肽段暴露出来,以利于诱导中和抗体的产生.

  (2)应用表位疫苗,以诱导针对多种抗原表位的特异性免疫应答,从而减少病毒逃避免疫系统.

  (3)调节基因及其编码产物以及逆转录酶(RT)均是良好的免疫原,可尝试开发针对这些表位的疫苗.

  (4)病毒样颗粒疫苗,是利用不完整的部分HIV DNA感染细胞后产生的病毒蛋白自身可以组装成颗粒样结构的特性,它有很强的免疫原性和很好的安全性,也无任何传染性[4].

  (5)佐剂的使用,有文献表明,IFN-r,GM-CSF,IL-1,IL-2,IL-4等细胞因子及趋化性细胞因子与DNA疫苗共同应用,能明显增强抗原特异性T淋巴细胞的免疫应答[17][18].

  (6)改进免疫方法和途径,如可采用联合疫苗策略和黏膜免疫策略.

  自1983年爱滋病病毒成功分离出来以来,爱滋病的感染人数呈持续上升的趋势,高效抗反转录病毒疗法虽能延长病毒的复制周期,改善病人的生存质量,但并不能完全清除体内的病毒.因此,HIV疫苗成为预防和控制病毒感染的希望.经过20多年不断摸索,研制出了多种多样的HIV疫苗,部分已进入了临床试验阶段,但仍未能在临床中得到广泛的应用.因此,研究更为安全,有效的HIV疫苗任重而道远.
 

本文地址:http://www.dadaojiayuan.com/jiankang/241456.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章