登录
首页 >> 健康生活

新加坡研发出绿色制药法,化二氧化碳为良药(超临界CO2溶剂的应用范围)

佚名 2024-05-05 00:41:18

新加坡研发出绿色制药法,化二氧化碳为良药

新加坡科研人员最近研发出一种“绿色化工”制药法,能够将空气中的二氧化碳转化成一种可以杀灭癌细胞、降低胆固醇以及制作抗生素的基本物质―炔酸。这种制药方法不仅能够大量消耗空气中导致气候变化的二氧化碳,而且还能降低制药成本。

这项科研成果是由新加坡科技研究局生物工程与纳米技术科技研究院发明的。新加坡科技研究局已经为该科研成果申请了专利,该成果也在最新一期的《美国国家科学院院刊》上发表。

由于制药原材料之一的二氧化碳几乎是零成本,而且制药合成过程相对简单,因此会比现有的制药科技成本更加低廉。目前该研究院正在寻找相关制药公司合作,以进行大规模开发和制药。

炔酸除了可以合成药物以外,也是导电聚合物的基本物质。有专家估计这也有助于降低目前相对昂贵的材料价格。所谓“绿色化工”,目前涉及到12个领域,包括节约用水及原料、使用较安全的化学原料及溶解物质、提高能源效率、使用再生原料及催化剂等。其中在二氧化碳领域,虽然一些国家已开展碳封存项目,日本也在兴建二氧化碳转甲醇的工厂,不过大部分项目尚处于研究阶段。

新加坡政府非常支持“绿色化工”项目,经济发展局去年6月与制药公司葛兰素史克共同投入5000万新元设立基金,其中三分之二将用于发展绿色与可持续性制造领域。

超临界CO2溶剂的应用范围

二氧化碳,可以说是目前应用最广的超临界流体,这主要是因为它没有毒性,临界温度低与价格便宜等因素.近年来最引人注意的研究领域则主要在机能性成分的萃取,纤维染色技术,半导体的清洗,特殊药用成分的颗粒生产,乾洗技术,化学反应与超临界流体净米技术等.以下为常见的超临界二氧化碳在各种工业中的应用范围 A.植物油脂(大豆油,蓖麻油,棕油,可哥脂,玉米油,米糠油,小麦胚芽
油等)的提取
B.动物油脂(鱼油,肝油,各种水产油)的提取;食品原料(米,面,禽蛋)
的脱脂
C.脂质混合物(甘油酯,脂肪酸,卵磷脂等)的分离与精制
D.油脂的脱色和脱臭
E.植物色素和天然香味成分的提取
F.咖啡,红茶脱除咖啡因
G.啤酒花的提取
H.发酵酒精的浓缩 A.鱼油中的高级脂肪酸(EPA,DHA,脱氢抗坏血酸等)的提取
B.植物或菌体中高级脂肪酸(γ-亚麻酸等)的提取
C.药效成分(生物碱,黄酮,脂溶性维生素,甙等)的提取
D.香料成分(动物香料,植物香料等)的提取
E.化妆品原料(美肤效果剂,表面活性剂,脂肪酸酯等)的提取
F.烟草脱除尼古丁. 常见使用超临界二氧化碳技术的应用包括了传统产业的乾洗业,纤维染色技术,化学反应和高科技产业的半导体清洗技术传统乾洗业,正面临其所使用的有机溶剂,过氯酸乙烯(percholoretylene),对于健康上与环保上的危害的压力,许多主要的相关产业业者,也不断的寻求替代的方法.事实上,利用超临界流体技术的乾洗设备,已经在1999年正式在美国设立营业店面,这套设备的单价约在75,000美金到50,000美金之间.PDF created with pdfFactory Pro trial version
这个超临界流体工业化的应用,证明超临界二氧化碳,能有效的与传统民生工业在价格上作竞争.另外的清洗应用包括了金属零组件的清洗,商业用洗碗机与一般的家用清洗设备.
利用超临界二氧化碳,取代现行有机溶剂的染色技术,对于环保,废水处理与制造成本上,有非常多的优点.由于超临界二氧化碳流体,基本上的特性较接近气体,故对于应用于取代有机液体,进行聚酯纤维的染色技术制程而言,不会有排废问题的产生,这还包括了工业用水的减少,与有害工业废弃物的减量.在经济性的优点,还包括了产量的增加,减少能源的消耗,纤维染色技术工业化的应用成功,将增强染色技术在经济上的竞争力,和纺织工业制程操作的技术提升,更能有效减少废水的排放与染色的时间,对于时间,能源,环保与成本等层面,都是一大进步.因此,超临界流体染色技术,将会是更省时,更经济,更环保的新制程.超临界流体染色技术研究在工研院化工所的努力之下,将带领化工业者进入绿色化学时代的新摇篮.
超临界二氧化碳,提供了传统有机溶剂使用的另一种选择.除了在环保上的优点之外,对于温度,压力,流速,反应物浓度等反应变因的控制,使反应本身的控制更为容易,由于反应操作控制容易,也相对的增加了反应的选择性与产量.因此,反应本身能在较少的时间与空间上进行,对于设备成本投资的减少也是一大贡献,对于一些反应物本身在二氧化碳流体溶解度较小的物质,主要的技术克服要点在于乳化微粒(micelle)的形成,与其在二氧化碳流体中的动速率.在这方面的应用,以美国杜邦公司在北卡罗兰那州,投资达4,000万美元的新建研究工厂投资案,最受到关注,主要的研究方向就是想利用超临界二氧化碳,作为反应溶液,以生产含氟聚合物(fluoropolymer).
对于半导体晶片上光阻物质和蚀刻的残留物质,一直都没有一种有效的化学方法来去除,通常必须配合几种不同的方法与设备,例如电浆灰化(Plasmaashing )与湿式或乾式清洗,才能达到产品品质的要求,现有的湿式清洗方法是利用具侵蚀性的硫酸,双氧水或有机溶剂混合使用,这些传统的方法会产生大量的有机废液,对环境造成极大的冲击.因此包括隶属美国能源部著名的LosAlamos 国家实验室和其他各国的研究机构,也积极的在开发利用超临界二氧化碳处理技术,以去除半导体晶片上的上述的光阻物质,利用超临界流体技术处理方法,能有效的在单一清洗槽中,将半导体晶片上残留杂质清洗干净,由于超临界流体的表面张力和黏度非常的低,故能有效而且快速的将清洁溶剂,带到低于0.18μm的微细组织结构中,对于光阻物质及其衍生物的去除,同样的能大量的减少有害溶液的使用量,并减少废水的产生,更重要的是简化了制程并增加产量.
此外,下列的化工产业也开始使用超临界二氧化碳萃取技术,以降低生产过程的污染物产生
A.石油残渣油的脱沥
B.原油的回收,润滑油的再生
C.烃的分离,煤液化油的提取
D.含有难分解物质的废液的处理 超临界二氧化碳在医学工业上的应用远超过其他工业,因此将超临界二氧化碳在医学工业范畴内的应用分为三大类-生物活性物质和天然药物提取,药剂学,药物分析
A.生物活性物质和天然药物提取
(A)浓缩沙丁鱼油,扁藻中的EPA和DHA,综合利用海藻资源开辟了新的途径.
(B)从蛋黄中提取蛋黄磷酯
(C)从大豆中提取大豆磷酯
(D)从烂掉的番茄中提取β-胡萝卜素
B.药剂学
超临界流体结晶技术是根据物质在超临界流体中的溶解度对温度和压力敏感的特性制备超细颗粒,其中气体抗溶剂过程(GAS)常用于生物活性物质的加工.GAS过程是指在高压条件下溶解的二氧化碳使有机溶剂膨胀,内聚能显着降低,溶解能力减小,使已溶解的物质形成结晶或无定型沉淀的过程.应用如下
(A)将二氧化碳和胰岛素二甲亚碸溶液经一特制喷嘴,从顶部进入沉淀器,二者在高压下混合后流出沉淀器,胰岛素结晶就聚集在底部的筛检程式上.
(B)如提高溶解性差的分子的生物利用度
(C)开发对人体的损害较少的非肠道给药方式(如肺部给药和透皮吸收系统).
C.药物分析
将超临界流体用于色谱技术称超临界流体色谱,如图2,兼有高速度,高效和强选择性,高分离效能,且省时,用量少,成本低,条件易于控制,不污染样品等,适用于难挥发,易热解高分子物质的快速分析.专家用超临界流体色谱分析了咖啡,姜粉,胡椒粉,蛇麻草,大麻等.总之,超临界技术在制药业除了用于从植物中提取活性物质外,应用越来越广泛,许多有前途的应用正在开发之中.
D.特殊药用成分的颗粒生产
在药品工业应用上,特殊药品颗粒的制造,超临界流体技术
工业化应用重要技术发展超临界流体技术能有效的控制药用颗粒的形成,不论是实心颗粒或是内部结构松散的颗粒,极性或是非极性以及粒径由50nm到50μm大小的颗粒都能生产,这些颗粒形成的应用技术主要有三大类,分别是:超临界溶液快速膨胀法(RESS),气体或超临界流体的反溶剂(GAS or SAS)以及压缩反溶剂沉淀(PCA).上述技术的应用产品范围包括了吞食性药粉,静脉注射性溶液分散剂等.目这方面的应用研究的小型设备非常多,而工业化生产的设备也只需约50公升的槽体即可,在设计上也以多产品多功能的设备较合实际的需要,主要的问题可能是在于设备必须符合药品良好作业程序规范(cGMP)的规定,这些要求可能必须包括二氧化碳的品质与来源,和对于制程与原料的各项要求,在工厂的软体与硬体的规定,则包括制程标准化,品管与品保制度,作业程序订定,控制软体与硬体认证,原料与设备材质的品质要求,压力容器检验,设备清洗作业规定与控制器感应装置的校正等,这些规定对于设备制造商与使用设备的产品制造商而言,都非常重要,也是必须估计在投资的成本计算上.

二氧化碳的用途(简单些)

二氧化碳的用途之一

一般条件下,二氧化碳不支持燃烧且比空气重,将二氧化碳覆盖在燃着的物体表面,可使物体跟空气隔绝而停止燃烧,因此二氧化碳可用灭火,是常用的灭火剂。在化学工业上,二氧化碳是一种重要的原料,大量用于生产纯碱(Na2CO3)、小苏打(NaHCO3)、尿素[CO(NH2)2]、碳酸氢铵(NH4HCO3)、颜料铅白[Pb(OH)2·2PbCO3]等。在轻工业上,生产碳酸饮料、啤酒、汽水等都需要二氧化碳。在现代化仓库里常充入二氧化碳,防止粮食虫蛀和蔬菜腐烂,延长保存期。固态的二氧化碳即“干冰”,主要用作致冷剂,用飞机在高空喷撒“干冰”,可以使空气中水蒸气冷凝,形成人工降雨;在实验室里,“干冰”与乙醚等易挥发液体混合,可以提供-77℃C左右的低温浴。“干冰”还可以做食品速冻保鲜剂。在农业上,温室里直接施用二氧化碳作肥料,利用植物根部吸收二氧化碳,可以增进植物的光合作用。促进农作物生长,增加产量。在自然界,二氧化碳保证了绿色植物进行光合作用和海洋中浮游植物呼吸的需要。

二氧化碳的用途之二

除课本里提及的二氧化碳的各种用途外,尚有下列一些用途。

1.人体呼吸的有效刺激因素,它通过对人体外化学感受器的刺激,兴奋呼吸中抠。如果一个人长时间吸入纯氧,体内二氧化碳浓度过低,可导致呼吸停止。因此,临床上把5%二氧化碳与95%氧气的混合气体、应用于一氧化碳中毒、溺水、休克、碱中毒的治疗和麻醉上的应用。液态二氧化碳低温手术的用途也较广泛。

2.贮藏粮食、水果、蔬菜。用二氧化碳贮藏的食品由于缺氧和二氧化碳本身的抑制作用,可有效地防止食品中细菌、霉菌、虫子生长,避免变质和有害健康的过氧化物产生,并能保鲜和维持食品原有的风味和营养成分。二氧化碳不会造成谷物中药物残留和大气污染。用二氧化碳通入大米仓库24h,能使99%的虫子死亡。

3.作为萃取剂。国外普遍利用二氧化碳进行食品、饮料。油料、香料、药物等加工萃取。

4.用二氧化碳与氢气做原料,可生产甲醇、甲烷、甲醚、聚碳酸酯等化工原料和新燃料。

5 .作为油田注入剂。可有效地驱油和提高石油的采油率。

6.注入地下难于开采的煤层,使煤层气化,获得化工所需的合成气体和居间物。

7.保护电弧焊接,既可避免金属表而氧化,又可使焊接速度提高大约9倍。

有的科学家认为,大气中二氧化碳加倍,将使粮食平均增产超过30%,棉花增长80%以上,小麦和水稻一类作物增产36%。

8.在烹饪中用发酵粉或苏打的日的是为付了产生微小的二氧化碳气泡。这些气泡使面包、糕点或发面膨胀,吃起来松软适口。在制造面包时使用酵母,其作用与此相同,只是时间长些而已。发酵粉(或碳酸氢钠)与一种酸(如从酸牛奶产生的乳酸)作用而产生二氧化碳。市售“发酵粉”中常含有固态酸,在潮湿时,它与碳酸氢钠发生作用,也产生二氧化碳。

本文地址:http://www.dadaojiayuan.com/jiankang/239079.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章