记者23日从中国科学技术大学获悉,该校单革教授实验室近期发现了一种新型的环状非编码核糖核酸(rna),为进一步揭示人类生命原理,以及未来解释并防治一些重大疾病提供参考。该研究成果日前发表在国际知名杂志《自然-结构和分子生物学》上。
核糖核酸(rna)是存在于生物细胞以及部分病毒、类病毒中的遗传信息载体,而非编码rna通常因不能编码蛋白质,在20世纪90年代之前被认为是不具有生命意义的“杂信号”“垃圾rna”。近年来,随着研究的不断深入,国际学界发现非编码rna具有一些生物学作用,它的突变或表达异常与许多疾病的发生密切相关。
近期,中国科技大学单革教授实验室发现了一类新型的环状非编码rna,它具有独特的外显子-内含子结构,既不同于学界此前集中研究的线形rna分子,也与其他完全由外显子形成的环形rna的细胞质定位不同。他们还发现,这种新型环状非编码rna可以调控其自身所在基因的表达,并研究了它促进基因转录的机理。
近年来,国际学界陆续发现非编码rna具有基因调控作用,对癌症、抑郁症、睡眠障碍等疾病的产生有一定影响。有学者预测,非编码rna研究将成为一种防治疾病的新型工具。中科大发现的这种环状非编码rna,有望对探索生物进化进程,以及未来人类防治重大疾病产生积极作用。
生命的起源
地球在宇宙中形成以后,开始是没有生命的。经过了一段漫长的化学演化,就是说大气中的有机元素氢、碳、氮、氧、硫、磷等在自然界各种能源(如闪电、紫外线、宇宙线、火山喷发等等)的作用下,合成有机分子(如甲烷、二氧化碳、一氧化碳、水、硫化氢、氨、磷酸等等)。这些有机分子进一步合成,变成生物单体(如氨基酸、糖、腺甙和核甙酸等)。这些生物单体进一步聚合作用变成生物聚合物。如蛋白质、多糖、核酸等。这一段过程叫做化学演化。蛋白质出现后,最简单的生命也随着诞生了。这是发生在距今大约36亿多年前的一件大事。从此,地球上就开始有生命了。生命与非生命物质的最基本区别是:它能从环境中吸收自己生活过程中所需要的物质,排放出自己生活过程中不需要的物质。这种过程叫做新陈代谢,这是第一个区别。第二个区别是能繁殖后代。任何有生命的个体,不管他们的繁殖形式有如何的不同,他们都具有繁殖新个体的本领。第三个区别是有遗传的能力。能把上一代生命个体的特性传递给下一代,使下一代的新个体能够与上一代个体具有相同或者大致相同的特性。这个大致相同的现象最有意义,最值得我们注意。因为这说明它多少有一点与上一代不一样的特点,这种与上一代不一样的特点叫变异。这种变异的特性如果能够适应环境而生存,它就会一代又一代地把这种变异的特性加强并成为新个体所固有的特征。生物体不断地变异,不断地遗传,年长月久,周而复始,具有新特征的新个体也就不断地出现,使生物体不断地由简单变复杂,构成了生物体的系统演化。
地球上早期生命的形态与特性。地球上最早的生命形态很简单,一个细胞就是一个个体,它没有细胞核,我们叫它为原核生物。它是靠细胞表面直接吸收周围环境中的养料来维持生活的,这种生活方式我们叫做异养。当时它们的生活环境是缺乏氧气的,这种喜欢在缺乏氧气的环境中生活的叫做厌氧。因此最早的原核生物是异养厌氧的。它的形态最初是圆球形,后来变成椭圆形、弧形、江米条状的杆形进而变成螺旋状以及细长的丝状,等等。从形态变化的发展方向来看是增加身体与外界接触的表面积和增大自身的体积。现在生活在地球上的细菌和蓝藻都是属于原核生物。蓝藻的发生与发展,加速了地球上氧气含量的增加,从20多亿年前开始,不仅水中氧气含量已经很多,而且大气中氧气的含量也已经不少。细胞核的出现,是生物界演化过程中的重大事件。原核植物经过15亿多年的演变,原来均匀分散在它的细胞里面的核物质相对地集中以后,外面包裹了一层膜,这层膜叫做核膜。细胞的核膜把膜内的核物质与膜外的细胞质分开。细胞里面的细胞核就是这样形成的。有细胞核的生物我们把它称为真核生物。从此以后细胞在繁殖分裂时不再是简单的细胞质一分为二,而且里面的细胞核也要一分为二。真核生物(那时还没有动物,可以说实际上也只是真核植物)大约出现在20亿年前。性别的出现是在生物界演化过程中的又一个重大的事件,因为性别促进了生物的优生,加速生物向更复杂的方向发展。因此真核的单细胞植物出现以后没有几亿年就出现了真核多细胞植物。真核多细胞的植物出现没有多久就出现了植物体的分工,植物体中有一群细胞主要是起着固定植物体的功能,成了固着的器官,也就是现代藻类植物固着器的由来。从此以后开始出现器官分化,不同功能部分其内部细胞的形态也开始分化。由此可见,细胞核和性别出现以后,大大地加速了生物本身形态和功能的发展。
生命的起源
关于生命起源的问题,很早就有各种不同的解释。近几十年来,人们根据现代自然科学的新成 就,对于生命起源的问题进行了综合研究,取得了很大的进展。
根据科学的推算,地球从诞生到现在,大约有46亿年的历史。早期的地球是炽热的,地球上的一切元素都呈气体状态,那时候是绝对不会有生命存在的。最初的生命是在地球温度下降以后,在极其漫长的时间内,由非生命物质经过极其复杂的化学过程,一步一步地演变而成的。目前,这种关于生命起源是通过化学进化过程的说法已经为广大学者所承认,并认为这个化学进化过程可以分为下列四个阶段。
从无机小分子物质生成有机小分子物质 根据推测,生命起源的化学进化过程是在原始地球条件下开始进行的。当时,地球表面温度已经降低,但内部温度仍然很高,火山活动极为频繁,从火山内部喷出的气体,形成了原始大气(下图)。一般认为,原始大气的主要成分有甲烷(CH4)、氨 原始地球的想象图
(左)原始大气(右)有机物形成
(NH3)、水蒸气(H2O)、氢(H2),此外还有硫化氢(H2S)和氰化氢(HCN)。这些气体在大自然不断产生的宇宙射线、紫外线、闪电等的作用下,就可能自然合成氨基酸、核苷酸、单糖等一系列比较简单的有机小分子物质。后来,地球的温度进一步降低,这些有机小分子物质又随着雨水,流经湖泊和河流,最后汇集在原始海洋中。
关于这方面的推测,已经得到了科学实验的证实。1935年,美国学者米勒等人,设计了一套密闭装置(下图)。他们将装置内的空气抽出,然后模拟原始地球上的大气成分,通入甲烷、氨、氢、水 米勒实验的装置
蒸气等气体,并模拟原始地球条件下的闪电,连续进行火花放电。最后,在U型管内检验出有氨基酸生成。氨基酸是组成蛋白质的基本单位,因此,探索氨基酸在地球上的产生是有重要意义的。
此外,还有一些学者模拟原始地球的大气成分,在实验室里制成了另一些有机物,如嘌识、嘧啶、核糖,脱氧核糖,脂肪酸等。这些研究表明:在生命的起源中,从无机物合成有机物的化学过程,是完全可能的。
从有机小分子物质形成的有机高分子物质 蛋白质、核酸等有机高分子物质,是怎样在原始地球条件下形成的呢?有些学者认为,在原始海洋中,氨基酸、核苷酸等有机小分子物质,经过长期积累,相互作用,在适当条件下(如吸附在粘土上),通过缩合作用或聚合作用,就形成了原始的蛋白质分子和核酸分子。
现在,已经有人模拟原始地球的条件,制造出了类似蛋白质和核酸的物质。虽然这些物质与现在的蛋白质和核酸相比,还有一定差别 ,并且原始地球上的蛋白质和核酸的形成过程是否如此,还不能肯定,但是,这已经为人们研究生命的起源提供了一些线索;在原始地球条件下,产生这些有机高分子的物质是可能的。
从有机高分子物质组成多分子体系 根据推测,蛋白质和核酸等有机高分子物质,在海洋里越积越多,浓度不断增加,由于种种原因(如水分的蒸发,粘土的吸附作用),这些有机高分子物质经过浓缩而分离出来,它们相互作用,凝聚成小滴。这些小滴漂浮在原始海洋中,外面包有最原始的界膜,与周围的原始海洋环境分隔开,从而构成一个独立的体系,即多分子体系。这种多分子体系已经能够与外界环境进行原始的物质交换活动了。
从多分子体系演变为原始生命 从多分子体系演变为原始生命,过是生命起源过程中最复杂和最有决定意义的阶段,它直接涉及到原始生命的发生。目前,人们还不能在实验室里验证这一过程。不过,我们可以推测,有些多分子体系经过长期不断地演变,特别是由于蛋白质和核酸这两大主要成分的相互作用,终于形成具有原始新陈代谢作用和能够进行繁殖的原始生命。以后,由生命起源的化学进化阶段进入到生命出现之后的生物进化阶段。
关于生命起源的化学进化过程的研究,虽然进行了大量的模拟实验,但是绝大多数实验只是集中在第一阶段,有些阶段还仅仅限于假说和推测。因此,在对于生命起源,问题还必须继续进行研究和探讨。
蛋白质和核酸是生物体内最重要的物质。没有蛋白质和核酸,就没有生命。1965年,我国科学工作者人工合成了结晶牛胰岛素(一种含有51个氨基酸的蛋白质)。1981年,我国科学工作者又用人工的方法合成了酵母丙氨酸转运核糖核酸(核糖核酸的一种)。这些工作反映了我国在探索生命起源问题上的重大成就。
20世纪生命科学取得了两次革命性进展,第一次是孟德尔遗传定律的再发现和摩尔根的基因论,第二次是沃森和克里克的DNA双螺旋模型及随后分子生物学飞速发展。分子生物学的成熟和计算机科学的发展,使人类有能力破译自身的全部密码,由此于1990年启动了“人类基因组计划”。它和“曼哈顿工程”和“阿波罗登月计划”并称20世纪绵三大科学计划。到2003年,人类基因组30亿个碱基的序列将全部被测定,接着人类将进入破译遗传密码、研究5-10个基因功能的后基因组时代。那时,包括人自身在内的生命活动的最本质的过程和规律将被阐明。生物信息学不仅在破译遗传密码中发挥了根本作用,还将对蛋白质等生物大分子进行结构模拟和药物设计。在21世纪生命活动的基本过程和规律已经澄清,这为生物技术的腾飞提供了原动力。正在发展的生物信息技术、生物芯片技术、胚胎干细胞等关键技术,加上已经成熟的克隆技术、转基因技术等不仅使生物技术产业成为21世纪最重要的产业,也将深刻改变人类的医疗卫生、农业、人口和食品状况,同时生命科学生物技术的发展也向人类社会和伦理道德提出了严峻的挑战。
生命科学是研究生命活动的过程、规律以及生命体与环境相互作用规律的科学
二、生物学
分子生物学本身在下世纪仍将继续保持蓬勃发展的势头。结构分子生物学将从生物大分子到细胞之间的层次切入。单个生物大分子功能自组装和操纵的研究,将与纳米技术、生物芯片技术等高新技术汇集起来,模拟天然细胞器的功能,发展各种用途分子机械。细胞的两个信息系统,即染色体上的遗传信息系统与细胞质内信号系统(受体、信号传递分子)之间的关系和相互作用将研究细胞生长、分化和功能活动的焦点,并得到迅速发展。
20世纪生物学最宏伟的《人类基因组计划》从1990年起的顺利实施,大大加速了生命科学各方面的发展。下世纪初,人和其他模式生物(微生物、线虫、果蝇、斑马鱼、拟南芥菜、水稻等)基因组作图和测序将陆续完成。分子生物学研究的重点也将从基因组扩展到蛋白质组。在这种发展形势下,生物学正进入“后基因组时代”(postgenome era),或者说功能基因组时代。
从总体看来,以基因组研究为核心,在方法学上分析与综合想结合,比较和实验相结合,微观与宏观相结合,来探讨生命的本质和起源,遗传、发育和进化的理论大综合,以及阐明脑高级功能活动,将是下一世纪生物学基础理论研究的大趋势。
我国生物学在某些方面达到了世界先进水平,如人工合成有活性的胰岛素和tRNA等。改革开放20年来,发展速度更为空前。在学科布局和专业设置上,新建了分子生物学、细胞生物学、神经生物学、生物技术等一批新学科和专业,并创办了相应的研究所(室),为国家培养了大量研究和教学人才。1987年开始实施的《国家高技术研究发展计划,生物技术领域》(简称“863”计划)对促进大学分子生物学实验室装备现代化和实验技术的发展也起了很大作用。面对下世纪世界将进入全球化知识经济时代的形势,我国政府在1997年提出《国家重点基础研究发展规划》(简称(“973”规划),加大了对基础研究投入。瞄准国家目标和国际前沿,在农业、人口与健康、资源和环境等方面逐步实施一批与生物学有关的重大项目。
然而,我国生物学基础研究总体上落后的状况,并没有得到根本的改善。面对国际生命学已进入后基因组时代,我国生物学基础研究与国际的差距还有更加拉大的危险。
重点发展方向展望
21世纪初期对我国生物学在下世纪的发展具有重要的意义。基因组和脑研究将是下世纪初国际竞争的焦点。
(1)基因组研究
人类基因组计划预计在2003年获得完全序列图。届时,人类10万个基因的信息及相应的染色体位置将被阐明,成为医学和生物制药产业知识和技术创新的源泉。这是人类自实现登月以来的又一伟大科学创举。目前该计划已揭开了新的面:从基因组与环境相互作用的高度阐明基因组的功能,亦即功能基因组学。为此,需要发展能够在基因组整体水平获取功能信息大规模、并行化分析技术,如生物芯片,以及对数据进行储存、分析、加工和传输的生物信息学。基因组研究的重点将会是:
①人类和模式生物的基因组DNA测序。
②功能基因组学研究:基因组多样性研究;基因组的表达调控和蛋白产物的功能;比较基因组研究;疾病基因组学研究;作物基因组学研究。
(2)遗传语言破译
生物信息学是适应人类基因组信息分析的需要而出现的一门与信息科学、数学、计算机科学等交叉的新兴学科。《人类基因组计划》在完成基因组全部序列(30亿碱基对)测序后,下一步更艰巨的任务是读懂基因组的工作语言--遗传语言破译。这是下世纪自然科学面临的最大挑战之一。其前沿研究领域有:
1、人基因组信息结构复杂性;序列(特别是非编码区)信息分析;
2、基因组结构与遗传语言:语法和词法分析;
3、大规模基因表达谱分析,相关算法、软件研究;基因表达调控网络研究;
4、基因组信息相关的蛋白质功能分析;
5、生物信息学中新理论、新方法、新技术和新软件研究。
在当前基因组信息爆发的时代,建立超大规模计算系统,发展全新的生物信息学的理论、方法,分析这些数据,从中获得生物体结构、功能的相关信息基因组研究取得成果的决定性步骤。
(3)生物大分子的功能与结构基础
蛋白质是细胞结构、功能和活性的最主要负责分子。生物大分子之间的相互作用是基因复制和表达调控、信息传递、蛋白质合成、细胞器组装等的基础。阐明生物大分子的功能与结构将从分子水平深入了解细胞生命活动的分子基础,进而更深入的阐明生命的本质。
1、酶、信号转导分子、细胞骨架蛋白、病毒蛋白等重要蛋白质,特别是膜蛋白、糖蛋白及多分子体系的结构与功能;
2、光合中心的结构与光合作用超快过程;
3、RNA功能多样性及其结构特性;
4、生物大分子相互识别的结构基础(蛋白质-蛋白质;蛋白质-核酸;蛋白质-复合糖类);
5、蛋白质空间结构预测与分子设计;
6、大分子自装配与细胞基本结构体系的自组织。
(4)细胞活动的分子机制及遗传控制
(一)细胞信息系统及其调控
染色体构造在细胞周期和发育过程中的动态变化控制着基因按程序表达,由此调节细胞的生命活动。另方面,细胞质内信号系统(受体、信号传递分子等)又将来自内外环境的信号传递到核内,反馈调节染色质的构造和基因的活动。细胞的这两个信号系统的相互作用是细胞生长、分化和功能活动的关键。
1、基因组DNA荷载的遗传程序,在染色体上的构建方式和操作规则;
2、染色体(质)在间期核和发育中的动态结构与基因的功能活动;
3、染色质结构的修饰(DNA甲基化,组蛋白乙酸化、异染色质化)与基因表达程序的组
编和重组编(精、卵细胞的“印迹”、分化和去分化、全能性的改变和恢复);
4、细胞发育、分化的信号分子和信号传递通路,以及细胞内各种信号通路(生长、分化、
凋亡、衰老和变等)的整合。
(二)发育的细胞和分子机制及遗传控制
高等动物的构造和功能无论如何复杂,其发育的基本环节仍可归为细胞的生长、分化和凋亡。发育过程的特点是按严格时空秩序进行的一连串细胞间相互作用的因果锁链。而细胞生长、分化的基础是细胞专一的基因的表达调控。发育研究既是生物学问题,又是医学和农业问题。对于生育控制、畸胎和肿瘤发生及组织再生以及农作物产量和品质都有重要意义。
1、细胞周期和生长的调控;
2、精子和卵的发生、成熟、受精、着床的分子机制和基因控制;
3、图式形成、形态发生、诱导作用和器官发生的基因控制;
4、胚胎干细胞全能性和定向分化的诱导;
5、植物发育(育性、形态发生和株形等)的分子机制和基因控制。
(三)生物防御系统的细胞和分子基础
由于医学和生物学上的重要性,哺乳动物和人的免疫系统的细胞和分子基础已有很深入的研究,分子和细胞免疫已成为目前生物学前沿的热点。植物对病毒、真菌和昆虫等有害生物的侵袭也表现出不同程度的防御能力。但目前国际上对植物防御系统的细胞和分子基础的研究还很初步,缺乏系统的了解。这方面的基础研究对植物保护和抗性育种等农业问题重要性是显而易见的。
1、免疫细胞的发育、凋亡和调控;
2、新的功能性免疫分子及其受体(包括分化抗原、粘附分子、细胞因子、拮抗因子等);
3、自身免疫病发病机理及防治基础研究;
4、植物防御系统:外源分子的识别,信号传递和防御分子;
5、防御基因(抗真菌等)的分离和抗性育种的基础研究。
(5)脑研究
脑研究是生命科学的重大前沿,受到各政府和社会的高度重视。当前研究的前沿和主要趋势是在分子、细胞和整体水平对脑功能和疾病进行综合研究,并从脑的发育过程了解脑的构造原理。脑影象学技术(PET/fMRI等)能实时显示脑功能活动各部位间的时空关系,对从整体上了解脑功能活动也有重要作用。
1、视觉、痛觉、神经信息传递、加工、整合及调控;
2、脑功能活动的细胞和分子基础,包括突触可塑性的分子基础,各种脑细胞的基因表达谱和蛋白质谱等;
3、脑的发育和老化;中枢神经的再生和修复;神经元的变性和凋亡;
4、脑的高级功能(学习、记忆、语言、行为)的脑机制及其影象学研究;
5、脑复杂性的计算生物学、建模及脑功能的非线性动力学研究
(6)生物多样性及其可持续利用
生物多样性是人类赖以生存的基础,突出表现在两个方面:第一涉及人类生存环境,第二涉及生物资源的可持续利用。其重点研究领域是:
1、我国动植物和微生物基础资料和数据的采集和编研;
2、生物资源的动态变化和可持续利用的对策;
3、生物多样性的生态系统功能;
4、受损生态系统结构和功能及恢复和重建的生态学基础;
5、极端环境下生物物种(动植物和微生物)的适应机理;
6、我国濒危动植物保护的理论和方法;
7、种质库、DNA库和NDA文库的建立和长期保存的科学问题。
(7)生命起源和进化
生命起源和进化是哲学和生物学共同关心的大问题。目前正在举的进化发育生物学对各门典型动植物的基因组和发育机制的比较研究将阐明形体结构图式形态进化机制,微进化与巨进化的关系,在分子水平促进遗传、发育和进化的理论综合。
1、前生命化学进化中核酸和蛋白质的共起源;
2、真核细胞起源问题;
3、动、植物形态发育的分子机制与形态进货;
4、基因组进货机制和规律;
5、动、植物分子进化和分子系统学;
6、进化过程和机制--进化论的研究。
三、农学
90年代以来,上的动植物育种已进入分子水平。朝着快速改变动植物基因型的方向发展,动植物育种的一次新的革命正在到来。根据美英等西文发达国家政府和世界粮农组织的预测,21世纪全球农业的90%品种将通过分子育种手段育成,而品种对整个农业生产的贡献率亦将超过50%。
80年代兴起了对作物--土壤系统的水肥运行的作用机理及其调控的研究。国际土壤学会将“优化水分养分循环,减少水肥投入,提高资源利用效率,促进农业持续发展”列为重要基础研究领域。近年来,人们已开始研究营养素对特异生物活性物质基因表达各环节的作用。研究营养对基因表达作用是当今动植物营养的发展趋势和研究前沿。
病原茵的致病机理和植物抗病机理的研究是植物保护研究中一大特点,近来有关防卫体系的研究集中在防卫基因的表达调控上。
土地资源生产能力持续利用研究是90年代响应可持续发展战略而开展起来的。可持续土地利用的核心是现代土地利用方式对土地资源生产潜力的影响。在研究草原退化,土地荒漠化方面,国际上非常重视选择可对比类型进行长期定位观测。
针对中国21世纪可持续发展和食物安全以及高产、优质、高效、低耗的现代农业持续发展战略,以科学、合理地利用农业资源、保护生态环境提高农业综合生产力为主要目标,增强我国农业科技自身发展的后劲,使我国农业基础科学达到同期世界先进水平。
未来的基础农学学科前沿主要是分子生物学和生物信息学。随着现代遗传学和信息论的发展,以及分子生物技术和计算机技术等高新技术的不断改进,将促进以NDA全序列测定为主的基因组学研究的重大突破;在基因组水平上,以特定生命活动为目标,深入探讨相关基因的结构与功能、基因的表达与调控、信息网络与传递等生命科学问题将成为基础农学学科新的前沿和热点。
基础农学学科的主要发展方向是:
1、标记、分离、克隆与生殖发育相关的重要产量性状基因、重要品质性状基因以及与抗逆相关的功能基因,培育高产、优质、抗逆的新型动植物品种(系);
2、研究动植物养分高效利用的代谢生理及分子生物学基础;
3、动植物病虫害防御技术体系;
4、研究不同农、林、牧、渔业生态区的资源优化配置与合理布局,解析不同生态系统的结构与功能、退化生态系统的恢复与重建的原理与途径。
优先发展领域:
1、动植物重要经济性状的功能基因组学与比较基因组学;
2、动植物杂交与杂种优势的遗传学基础;
3、动植物高产、优质、抗逆和养分高效利用的遗传学基础;
4、动植物遗传资源核心种质构建、新基因发掘与有效利用;
5、作物抗逆性与水分、养分高效利用;
6、植物病虫害致致害性变异与寄主防卫分子机制;
7、重要疫病病原致病性深化的分子机制和宿主免疫机理;
8、农业资源、环境和生态的系统模型及优化治理;
9、土壤质量演变规律与土地资源的持续利用。
四、医学
近几个世纪以来,基础医学的发展不断由现象向本质,由宏观向微观深入。但是,近年来,人们逐渐认识到,要了解人体这一自然界中最复杂的系统,不仅需要“分析”,而且需要“综合”。正是这种分析与综合一致的思维和学科间渗透交叉推动着基础医学过去、现在和未来的发展。
重大疾病,如恶性肿瘤、心脑血管疾病、感染性疾病、神经精神病、创伤和消化系统疾病等一直是医学研究的方向与重点。另外,机体正常结构、功能(健康状态)的维持与调节机制也是未来医学研究的重要方面。
建国以来,我国医学发展举世瞩目,平均预期寿命已从35岁增至69岁。自50年代以来,从沙眼病毒分离到针刺镇痛,从多型肝炎病毒克隆到疾病基因组学研究,无一不浸透着我国基础医学工作者的心血。但不可否认,我国医学研究距国际先进水平还有差距。随着发达国家在本领域投入不断加大,这种差距可能还会加大。
前沿与学科发展优先领域
(一)肿瘤、心脑血管病等重大疾病发生发展及其干预措施的分子与细胞机制
1、重要功能基因与重大疾病相关基因结构、功能与表达调控的研究;
2、重大疾病相关的蛋白质组学和蛋白、多防结构与功能的研究;
3、生物信息学、基因芯片、基因治疗及组织工程等高新技术在重大疾病诊断、治疗中的应用;
4、干细胞(胚胎干细胞、造血干细胞神经干细胞等)的建系及分化。
(二)神经、免疫、内分泌调节系统在健康状态维持与疾病发生发展中的作用
5、神经损伤与功能紊乱的病理机理及干预措施;
6、神经退行性疾病病因学与诊断、治疗技术区;
7、重要免疫细胞发育分化及其在免疫耐受与免疫应答调节中的作用;
8、新型免疫调节分子的发现及功能研究:
9、神经-内分泌-免疫调节网络失调与疾病的关系。
(三)自然与社会因素对健康的影响及其致病机理
1、重要感染性疾病病原体致病机理相关的基因组学与蛋白质组学;
2、新病原体致病机理与干预措施;
3、外源性化学物的致病机理及监测、预防与诊治技术;
4、社会-心理因素与健康。
(四)药物在分子、细胞与整体调节水平的作用机理
1、药物基因组与蛋白组学研究;
2、以细胞信号转导途径为靶点的创新药物研究;
3、多糖、类脂、核酸等生物大分子与药物相互作用研究;
4、新的内源性活性物质的药理学研究
(五)中医药学理论体系与实践方法的发展研究
1、中医学理论在现代医学、生物学研究中的应用;
2、中草药复方活性成份的药理学研究
五、生物技术
本世纪70年代在生命科学领域取得了两项对人类生活和经济活动具有深刻影响技扫术突破,一个是重组DNA技术,一个是淋巴细胞杂交瘤技术。这两项革命性技术的出现,带动了生物技术的迅猛发展,逐步形成了一个全新的现代生物技术群及新兴产业。
自1982年世界上第一个基因工程药物重组人胰岛素上市以来,经过近20年的发展,世界范围的生物技术产业正在蓬勃兴起,作为高效益、高风险的新兴产业,生物技术产业正在猛烈的冲击着世界经济,并产生巨大的社会和经济效益。生物技术本身可以发展成为具有巨大市场前景的新兴产业,同时可通过提供源头技术和产品,对传统产业进行技术改造和产品更新换代,提高传统产业的经济效益。
世界生物技术本身发展的总体趋势是:生物技术在经历了第一次浪潮(医药和保健领域)后,迎来了第二次浪潮,即重点发展:(1)农业生物技术;(2)环境生物技术;(3)生物制造和生物处理工艺及能源研究;(4)海洋生物技术研究。目前生物技术的应用已遍及农业食品、医药卫生、化工环保、生物资源、能源和海洋开发等各个领域,显示了它对解决人类所面临的食品、健康、资源、能源和环境等重大问题的巨大作用和市场潜力。
我国与西方发达国家相比,仍存在较大差距,大约为5-10年。但值得指出的是,我国生物技术研究与开发已在两系法杂交稻、抗虫转基因棉花和玉米、基因工程药物和疫苗、人血液代用品、人重大疾病相关基因研究和动物乳腺生物反应器、农作物组织培养和基因转移、家畜胚胎分隔和试管牛、羊等方面形成自己的特色和优势,并具备与世界发达国家整体竞争与抗衡的能力。
但是,我国生物技术产品缺乏创新,基本属于仿制,极易丧失发展后劲。因此,我国应高度重视产品和技术的创新,抢占二十一世纪生命科学的制高点。我们必须深刻认识到生命科学的发展和生物技术的发展是相铺相成的,为了迎接生命科学世纪的挑战。更好地参与新世纪激烈的生物技术产业的竞争,必须大力发展关键的生物技术,如,
(1)基因组学技术;
(2)生物信息技术;
(3)基因克隆、重组、表达技术;
(4)动植物体细胞克隆技术;
(5)生物芯片技术、微阵列技术(Microarray)和生物传感器的基础研究;
(6)人工组织与器官研制技术。
并带动农业生物技术、医药生物技术、环境生物技术、海洋生物技术和工业生物技术的高速发展。
六、结语
生命科学由于其对科学发展、社会进步和经济建设具有极其重要的作用,在20世纪得到了空前的重视,取得了丰硕的成果。面向2l世纪,“人类基因组计划”的完成和深入发展,将有可能从更深层次上了解人体生长、发育、正常生理活动和各种疾病的病因及发病机理,并提出防治策略、途径和方法。全球生态环境和生物多样性的保护和利用,对人类生存和世界经济的可持续发展有关键的意义,成为我国赖以实行可持续发展国策和“中国2l世纪议程”的科学基础。生命科学的研究也与国家安全紧密相关,比如基因武器将可能对人类造成不堪设想的危害。生命科学的进步也向数学、物理、化学以及技术科学提出许多新问题、新概念和新的研究领域。生命科学与信息科学、材料科学等的交叉,产生的智能科学和技术,将在下世纪推动智能产业的发展。建议国家和有关部门制定相应的政策和措施,使我国在生命科学世纪的竞争中占有越来越重要的地位。
(1)基本科学资料的积累、整理和现代化管理;
(2)制定全国基因组研究和应用的整体规划并加强领导;
(3)建立农业重大科学工程中心;
(4)保护医学资源和建立支持条件平台;
(5)加快建立生物技术风险投资机制和加强知识产权保护;
(6)加强生物安全性的研究与管理。
与由芯片和电路组成的传统计算机不同计算机的原材料是人工制作的片断传统计算机是将数据转化成和后再进行处理而计算机则是将数据转化成碱基序列传统计算机依靠电信号来控制而计算机则通过控制分子间的生化反应来完成运算。 由以色列魏茨曼研究所研制的这种计算机只有几个纳米大它能察觉到细胞中信使核糖核酸的异常。信使的作用是充当生成蛋白质的中间媒介传递遗传信息。在试管实验中该计算机对与肺癌和前列腺癌相关的异常信使非常敏感。在发现异常的信使后它便释放出由控制生成的抗癌药这种药物能抑制与肿瘤相关的基因表达。计算机的研制尚处起步阶段要将其应用到临床可能还需要等待数十年。但是美国威斯康星大学的计算机专家劳埃德·史密斯说“这种新型计算机是第一种使用做原料并释放药物的计算机首次实现了输入和输出的生物化。这就意味着它能够与活的生物系统相融合。” 目前这种计算机只能在特殊的盐溶液中发挥作用。研究人员指出要用它来真正诊治癌症还必须解决许多难题其中最重要的就是使其在生物环境中持续工作。研究人员预测未来的计算机要比目前这种样机复杂得多。它应该能够识别与癌症相关的多种分子而不仅是信使。另外它还能释放多种药物而不只限于药品。在这种计算机真正用于临床之前还必须进行组织培养液、低等生物、哺乳动物和人体试验 上海交通大学生命科学研究中心和中科院上海生命科学院营养科学研究所最近于试管中完成了DNA计算机的雏形研制在实验上把自动机与表面DNA计算结合到了一起。这在中国乃属首次相关论文已发表在中国《科学通报》49卷第1期的英文版上。 据介绍这一DNA计算机采用双色荧光标记对输入与输出分子进行同时检测用测序仪对自动运行过程进行实时监测用磁珠表面反应法固化反应提高可控性操作技术等以至最终在一定程度上完成模拟电子计算机处理0.1信号的功能将来通过计算芯片技术把电子计算机的计算功能进行本质上的提升在理论上和潜在的应用上都有重大意义。 近年来利用遗传物质DNA分子中蕴含的计算能力开发具有强大功能的DNA计算机成为计算机科学家和生物学家的梦想。1994年埃德曼用DNA分子解决了电子计算机原则上不能解决的“邮递员问题”揭开了DNA计算机研究的新纪元。2001年由以色列魏茨曼研究所首先完成的基于DNA分子的自动机模型被评选为当年的国际十大新闻。 上海交通大学生命科学研究中心主任贺林教授认为目前的DNA计算机尚处在襁褓阶段还不具商业运用价值但是其强大的并行运算能力和以生物分子为计算物质的特征是传统电子计算机所不具备的。 贺林教授说在不久的将来DNA计算机可被用来开发新一代的基因分型技术处理基因组的信息或用注入到人体内的DNA计算机进行基因治疗。如果DNA代表生命科学计算机代表信息科学DNA计算机这个典型的交叉课题或许是后基因组时代生命学科与信息学科大融合、大碰撞的一个缩影。编辑王秀 埃胡德教授以及以色列魏兹曼学院的研究人员在数年前就建造了最小的生物分子计算机现在在实验室的实验中他们已经能够使它分析生物信息发现和治疗前列腺癌和肺癌。埃胡德说我们已经给它增加了输入/输出系统它能够诊断出疾病并在试管中制造出相应的药物。 这种计算机的尺寸非常地小一滴水中就可能包含有1成亿个计算机。它的输入/输出模块以及软件都是由DNA分子构成的。 这一技术能够给癌症等疾病在未来的诊治带来革命性的变化无需再进行切片检查DNA计算机能够在人体内的组织中诊断疾病。埃胡德说我们的医疗计算机可能被看作一种药物由血液带到全身的各处检查每个细胞是否已经发生了病变。 它能够使医生在肿瘤形成前治疗癌症如果疾病已经扩散到身体的其它部分它会向“顽固的”细胞释放药物。不同的输入模块能够诊治不同的疾病。 现在生物计算机还只能在盐溶液中工作要把它应用到实际的疾病诊断中还有很多障碍需要突破。既要确保计算机能够在人体内的生物环境下继续正常工作又不能对人体自身的免疫系统造成混乱即要做到绝对安全这显然是非常必要的夏皮罗说。 它们也应该比现在的原型要复杂不仅仅是辨认跟癌症有关的RNA还要分配各种药物也不仅仅是DNA疗法。它们需要接受在细胞环境、组织、单个器官和动物体内的实验最终才能用在人身上。 试管中参与生化反应的分子很多相当于大批的DNA计算机在同时工作尽管生化反应有时需要很长的时间但极其大量一个摩尔的DNA溶液含有10的23次方个分子每个分子都是一台计算机的DNA计算机同时运算运算速度能达到每秒10亿次的高速。而且DNA计算机的能耗非常低耗能只有电子计算机的一百亿分之一而它的存储密度却大约是人们通常使用的磁盘存储器的10000亿倍这些都是DNA计算机的优点。” 夏院士对记者说“但DNA计算机也存在两大缺陷由于生化反应本身存在一定的随机性所以这种运算的结果也就不完全精确。另外参与运算的DNA分子之间不能像传统计算机一样进行通讯只能‘各自为战’这对于DNA计算机今后处理一些大型计算也是一种缺陷。” “最主要的是DNA计算机面对的这些障碍现在看来都是‘难以逾越的’所以除了针对一些特定问题DNA计算机在实际应用上还不如纳米计算机更有希望。”夏院士最后强调说。 新浪科技讯 据美国《新科学家》网站美国东部时间8月18日北京时间8月19日消息 世界第一台可运行游戏程序的DNA计算机现已面世。该系统命名为“MAYA”是目前第一个互动式DNA计算处理系统。该系统是以生化酶为计算基础来运算简单游戏。 DNA计算机是美国南加州大学莱昂纳德-阿德尔博士于1994年提出的奇妙构思DNA计算机通过控制DNA分子间的生化反应来完成运算。DNA分子之间的反应可取代CPU进行计算处理 。目前的DNA计算技术都必须将DNA溶于试管液体中。 该DNA计算系统是由美国哥伦比亚大学米兰-斯托贾诺维克Milan Stojanovic和新墨西哥大学达克-斯蒂芬维克Darko Stefanovic研制开发的。以色列魏茨曼科学研究所科比-贝尼桑Kobi Benenson称“用复杂的DNA分子反应作为逻辑通道进行数据处理并实现具体的游戏程序是DNA计算处理技术上的一个里程碑。” 通过生化酶不同的反应可实现比井字游戏更为复杂的计算处理。但是斯托贾诺维克和斯蒂芬维克表示“尽管DNA计算机可顺利运行而无需人为性干预。但是DNA计算机远不及硅芯片计算机因为在人机交互处理中人为操作与DNA计算机的交互不能像硅芯片计算机那样很好地结合在一起。”目前很少有人能战胜MAYA斯托贾诺维克已经输给MAYA100多次。他指出“我们应该改动游戏程序让电脑输几次使玩家感受到胜利的喜悦。” 伦敦大学计算机科学家彼得-本特利Peter Bentley说“这是一项非常有趣的研究成果。但是该系统只是一个新奇的事物目前仅限于井字游戏尚不能拓展至更广阔的 新华网华盛顿3月18日电记者毛磊美国科学家利用简单的DNA计算机在实验中为一个有24个变量、100万种可能结果的数学难题找到了答案。这是迄今利用非电子化计算手段解出的最复杂数学问题表明DNA计算机研制又迈出了重要一步。 美国南加利福尼亚大学教授阿德勒曼将这一研究成果发表在新一期美国《科学》杂志上。 DNA脱氧核糖核酸是生物遗传的物质基础它通过4种核苷酸的排列组合存储生物遗传信息。将运算信息排列于DNA上并通过特定DNA片段之间的相互作用来得出运算结果是DNA计算机工作的主要原理。 阿德勒曼教授是DNA计算机研究领域的先驱。他于1994年在实验中演示DNA计算机可以解决著名的“推销员问题”首次论证了这种计算技术的可行性。“推销员问题”用数学语言来说是要求在7个城市间寻找最短的路线这一问题相对简单心算就可以给出答案。 但这次阿德勒曼教授用DNA计算机演示新问题难度就大多了靠人脑的计算能力基本无法处理。这一逻辑问题名叫“NP完全3-SAT问题”听起来不知所云但可以形象化地表述如下 假设你走进一个有100万辆汽车的车行想买一辆称心的车。你向销售员提出了一大堆条件如“想买一辆4座和自动档的”“敞蓬和天蓝色的”宝马车等等加起来多达24项。在整个车行中能满足你所有条件的车只有一辆。从理论上说销售员必须一辆辆费劲地找。传统的电子计算机采用的就是这种串行计算的办法来求解。 阿德勒曼等设计的DNA计算机则对这一问题进行了并行处理。他们首先利用DNA片段编码了100万种可能的答案然后将其逐一通过不同容器每个容器都放入了代表24个限制条件之一的DNA。每通过一个容器满足特定限制条件的DNA分子经反应后被留下并进入下一个容器继续接受其它限制条件的检验不满足的则被排除出去从解决这个问题的过程中可以看出理论上DNA计算机的运算策略和速度将优于传统的电子计算机。阿德勒曼教授说虽然他们的新实验进一步提高了DNA计算机模型的运算能力但总的来说DNA计算机错误率还是太高要真正超越电子计算机还需要在DNA大分子操纵技术等方面有大的突破。 人们正在探索将光电子学和生物工程这两个最尖端的技术引入计算机领域研制超小型、超高速、超大容量的新型计算机并对此充满信心。人们对光子计算机的设想是1根据光学空间的多维特性为计算机设计新的逻辑结构和运算原理。2充分利用光子元件体积小传送信息速度快的特点用超高速大容量的光子元件替代目前计算机中使用的硅化学元件用光导纤维或光波代替普通金属导线。 仿生计算机的设计思路与光子计算机有异曲同工之妙1通过对生物的脑和神经系统中信息传递、信息处理等原理的进一步研究设计全新的仿生模式计算机并与人工智能的研究相互借鉴、共同发展。2模拟生物细胞中的蛋白质和酶等物质的产生过程制造出仿生集成芯片来替代目前计算机中使用的半导体元件。 50年前年轻的美国科学家詹姆斯·沃森和英国科学家弗朗西斯·克里克正式提出了DNA脱氧核糖核酸的双螺旋结构模型。DNA结构这一分子生物学中最基本的谜团揭开后释放出了惊人的能量。这50年来因为DNA的研究而涌现出来的基因克隆、基因组测序、聚合酶链式反应等技术直接促进了现代生物技术产业的兴起。可以说DNA双螺旋结构的发现为现代基因工程奠定了基础。 事实上DNA的影响力远不止于生物领域它直接启发了区别于传统电子计算机计算模式的DNA计算机的出现。1994年DNA计算机诞生于南加利福尼亚大学莱昂那多·阿德莱曼Leonard Adleman教授的试管中据说这一设想是受到沃森所著的《基因分子生物学》教科书的启发。虽然在9年之后的今天DNA计算机还只是科学之树的“嫩枝”科学界对其态度也见仁见智。但在“寻找硅的替代物”已成为一场如火如荼的运动的今天DNA计算依然是值得探索的方向。 DNA启发计算。与传统的硅电子计算机“看得见、摸得着”并有着越来越精致的外型不同的是目前的DNA计算机还都只是躺在试管里的液体。之所以会构造出如此古怪的计算机其原因在于科学家普遍认为目前计算机的缩微化已接近极限。摩尔定律告诉我们芯片制造商大约每18个月就会把挤在指甲盖那么大的硅片里的晶体管数量增加一倍而事实的确如此。物理学定律则认为这种成倍增长的速度不会永远持续下去。最终晶体管会变得非常小小到只有几个分子那么大。在这样小的距离里起作用的将是古怪的量子定律电子会从一个地方跳到另外一个地方而不穿过这两个地方之间的空间就像破漏的消防水管中的水这时的电子会越过导线和绝缘层从而产生致命的短路。因此人们需要掌握能制造出体积更微小的计算机的技术目前谈得较多的DNA计算机、量子计算机、光子计算机、分子计算机就是这一领域主要的探索方向。 就现在的情况下还难以预测下一代计算机将会是什么样的或许未来的计算机芯片是一滴溶液。可千万别小看这一滴溶液阿德莱曼当年就是用一滴溶液解决了著名的“推销员问题”即哈米尔顿Hamilton的路径问题要求在7个城市间寻找最短路线虽然这一问题相对简单人类的心算就可以解决但这是对DNA计算技术可行性的首次论证。去年阿德莱曼又利用简单的DNA计算机为一个有着24个变量、100万种可能结果的数学难题这一逻辑问题名为“NP完全3-SAT问题”找到了答案而这样的计算就连传统计算机都不易做到。其实DNA计算机的最大优点在于其惊人的存贮容量和运算速度。一立方厘米的DNA上存储的信息比一万亿张光盘存储的还多十几小时的DNA计算就能相当于所有电脑自问世以来的总运算量。 更重要的是DNA计算机的能耗非常低只有电子计算机的一百亿分之一。虽然目前单个DNA计算机的运算速度比传统计算机慢得多但由于它能够同时执行大量的运算如一根试管可容纳一万亿个DNA计算机这些计算机可以同时并发运算如此看来“稚嫩”的DNA计算机至少非常适合于解决那些需要穷尽各种计算结果的“组合问题”。 何时突破“试管”一些科学家预计十到二十年后DNA计算机将进入实用阶段。当然也有不少科学家对此提出了质疑。毕竟九年的时间对于看清楚可能会对未来产生重大影响的技术的前途来说实在太短。不说别的可自动运行的DNA计算机也才诞生了不足两年早先的DNA计算机需要研究人员的一点“手工”推动如改变温度或添加化学物。 这台世界上首次在输入、输出系统及软硬件均由生物分子制成的自动编程运算式DNA计算机诞生在以色列的魏茨曼学院该学院的埃胡德·沙皮罗教授在发表这项成果的同时表示“目前这种计算机的功能尚显单一在现实生活中不能马上应用而且太小了人们每次无法仅使用其中的一台。”另外参与运算的DNA分子之间并不能像传统计算机一样进行通讯只能“各自为战”。DNA计算机的弊端还不仅如此。当年阿德莱曼的“试管计算机”在几秒内得出了所有可能的哈米尔顿路径后却不得不再花费数周去拣出那些正确的答案。阿德莱曼在演示了其DNA计算机是如何解决“NP完全3-SAT问题”后也表示虽然他们的新实验进一步提高了DNA计算机模型的运算能力但总的来说DNA计算机错误率还是太高要真正超越电子计算机还需要在DNA大分子操纵技术等方面有大的突破。尽管如此种种的不足并没有阻碍DNA计算机的进一步发展尤其是其商业化的脚步。 2002年年初奥林巴斯公司与东京大学联合开发出了全球第一台能够真正投入商业应用的DNA计算机用于基因的诊断。该计算机由分子计算组件和电子计算部件两部分组成前者用来计算分子的DNA组合以实现化学反应搜索并筛选出正确的DNA结果而后者则对这些结果进行分析并且能将原来人工分析DNA需要的3天时间缩短为6个小时。除了在医疗领域外如新材料开发领域也在探讨DNA计算机的应用力图通过有效的配置分子达到生产出新材料的目的。这些足以说明DNA计算机正试图走出只能解决数学问题的有限用途真正开始深入产业。 更令人期待的是一旦微小的计算机成为现实这些“理想”如巨型计算机装在口袋里嵌入衣服里的计算机会告诉洗衣机应当用什么水温洗涤衣服笔芯中的墨水即将用完时嵌在笔中的计算机能提醒更换笔芯等等都能成真。 四进制与生物计算机。如果计算机采用了四进制会有什么好处其中最大的好处是能立即节省一半的运算单元并能提高系统的整体运算速度。如果某台电脑需要二十万个运算单元在采用了四进制后只需十万个运算单元就能发挥相同的效果。相对于电子计算机生物电脑的运算元件绝对不可能是集成电路或电子管这些与生物特性完全不相干的东西就像DNA计算机其本身依靠DNA中的A、T、G、C四个独立碱基构成先天性的形成了一个四进制组合这与目前半导体开合动作所形成的二进制一样。 事实上目前最可能成为生物计算机运算单元的也就是DNA或RNA核糖核酸。当然生物电脑仍存在很难突破的瓶颈。仅以运算元件来说DNA或RNA分子的控制毕竟不如集成电路容易况且是控制数以十万、百万计的DNA或RNA分子更别提如何辨别这些分子。不过正如当年的核融合技术在真正实现以前也曾遭遇过种种困难最终在海森堡、奥本海默、费曼等物理学家的努力下还是取得了成功一样相信随着人类科技的飞速发展待生物科技成熟后具有人工智能的、能为人类造福的全新计算机技术会在不远的将来诞生。
基因包括编码区和非编码区。
图中有三个基因,这三个基因中间的部分是非基因区段,如果这些区段发生碱基对的增添、缺失或替换,不属于基因突变。
而如果a、b、c这三个基因中无论是编码区还是非编码区发生碱基对的增添、缺失或替换,才属于基因突变。
本文地址:http://www.dadaojiayuan.com/jiankang/122952.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
上一篇: 这东西煮熟后,用来揉脸既美容又养颜