完成机构:[1]聊城大学食品科学与工程系,山东聊城252059 [2]浙江大学茶学系,浙江杭州310029
(一)广泛引进国外花椰菜杂交品种自交分离创新种质资源
鉴于目前国内花椰菜种质资源贫乏的现状,直接从国外引进优良一代杂种,通过自交分离、纯化,从中筛选出优良的种质资源,是最经济、有效的获得新种质的方法。目前国内花椰菜育种单位利用该方法已分离了大批新的种质资源和自交系,并利用这些种质资源选育出许多优良的花椰菜新品种,如白峰、津雪88、云山1号、丰花60、厦花6号等目前生产上推广的绝大多数品种。
(二)种内杂交创造新类型
甘蓝类蔬菜的不同亚种或变种间很容易杂交,因此可以通过种内杂交方法,创造优异的种质资源甚至创造新的物种。孙德岭等(2002)采用花椰菜(白菜花)与青花菜、花椰菜与紫花菜、紫花菜与青花菜之间杂交。其后代花球的单球重大大提高,接近于花椰菜,色泽介于父本和母本之间,而维生素C的含量接近青花菜,比花椰菜提高22%~60.6%,全糖含量比青花菜增加9.8%~33.1%(表11-1),口味甜脆,品质和口感都优于其父本和母本,通过进一步选育有望选育出新的花椰菜类型,为花椰菜家族增加新的成员。
表11-1 花椰菜新类型全糖、维生素C含量
(三)生物技术与花椰菜种质资源创新
常规育种在花椰菜种质资源创新方面起了很大的作用,但通常存在能稳定遗传的有益基因狭窄或缺乏;多数有益基因是由许多微效基因控制,且该类基因选择较困难以及基因型差异难以确定等问题。随着生物技术的发展,在传统育种工作的基础上,可以提高育种的针对性,克服常规育种中一些难于解决的问题,进一步拓宽有益种质资源的创新和利用。目前已经有越来越多的研究者注重应用生物技术进行种质资源的创新。
1.细胞工程与花椰菜种质资源创新
(1)花药培养和游离小孢子培养技术 20世纪60年代初,Guha和Maheshwari开创了花药培养诱导单倍体的方法。此后花药培养成为诱导单倍体的重要途径之一,并且在作物育种中得到应用。在花椰菜上,王怀名(1992)对嫩茎花椰菜花药和花粉培养中的胚胎发生进行了研究,观察了花药中花粉粒发育成胚状体的过程和再生植株染色体倍性。张小玲(2002)等研究认为,磁场预处理可明显提高花药培养愈伤组织的诱导率。陈国菊(2004年)以5个花椰菜品种为材料进行花药培养,获得再生植株,并得到了种子。
由于花药培养的方法不能排除再生植株来自体细胞的可能性,多年来使花药培养获得再生植株的研究进展缓慢。而采用游离小孢子培养的方法可以很好地解决这一难题,因此,游离小孢子培养的方法获得再生植株越来越受到重视。目前该技术已陆续在芸薹属的大白菜、不结球白菜、结球甘蓝、芥蓝、抱子甘蓝、羽衣甘蓝、大头菜、叶芥、芜菁甘蓝和花椰菜等蔬菜上获得成功。北京农林科学院蔬菜研究工程中心、河南农业科学院园艺研究所、天津科润蔬菜研究所等单位先后开展了花椰菜游离小孢子培养工作,初步建立了花椰菜游离小孢子培养技术体系,在一些品种中获得了花椰菜DH株系,培育出花椰菜优良新品种。
通过游离小孢子培养可快速、有效地获得DH纯系。DH株系具有稳定的遗传特性,并能从亲本获得随机排列的配子,由于游离小孢子培养能快速纯合杂合亲本,因此对由多基因控制的特异性状的筛选能一步到位,明显提高了选择几率,加快育种进程。耿建峰等(2002)利用游离小孢子培养产生的两个自交不亲和系配制出具有早熟、耐热、花球洁白、品质好和抗病性强等综合性状优良的花椰菜DH杂交种“豫雪60”,孙德岭(2002)对引进的国内外育种资源材料461份,利用游离小孢子培养和常规技术相结合进行种质资源的创新和对DH株系材料进行评价及鉴定,选育出“津品50”。
游离小孢子培养技术也被应用于芸薹属远缘及种间杂交育种中。石淑稳等(1993)分别从甘蓝型油菜与诸葛菜的属间杂种,甘蓝型油菜与白菜型油菜、甘蓝型油菜和芥菜型油菜的种间杂种获得游离小孢子胚和再生植株,为芸薹属植物远缘及种间杂交育种建立了种质资源创新的途径。
(2)原生质体融合技术 原生质体融合也称体细胞融合,是两种原生质体的杂交,它不是雌雄配子间的结合,而是具有完整遗传物质的体细胞之间的融合,它可打破种间、属间存在的性隔离和杂交不亲和性,从而广泛地聚合各种优良的基因,使变异幅度显著增大,创造新的种质资源。因而此项技术越来越受到遗传育种学家的重视。自Carlson等在1972年获得第一株烟草体细胞杂种植株以来,该技术体系不断完善和发展,在许多物种上细胞融合获得成功。20世纪80年代中期已报道有15个种内组合,38个种间组合,13个属间组合获得体细胞杂种植株,到90年代,通过体细胞杂交技术又添加了再生植株的种内杂种14个,种间杂种62个,属间杂种47个,并有2个科间组合的胞质杂种分化获得再生植株。在十字花科芸薹属中已获得融合杂种植株有:拟南芥油菜、甘蓝油菜、甘蓝+白菜型油菜、白菜型油菜+花椰菜。
原生质体融合技术与常规有性杂交的差别在于:体细胞杂交中没有减数分裂,有两个二倍体的细胞原生质体融合产生出四倍体的杂种植株,而用同样的亲本有性杂交则只产生二倍体杂种。
原生质体融合可以获得细胞质杂种,为培育细胞质雄性不育、抗除草剂等花椰菜品种提供了一条育种新途径。目前,通过有性杂交、回交转育的花椰菜细胞质雄性不育类型主要是Ogura胞质雄性不育类型和Polima胞质雄性不育类型。而利用常规育种转育年限一般需要6~11年,利用原生质体融合技术转移细胞质雄性不育基因可以克服有性回交转育所带来的年限长或杂交不亲和等问题,为花椰菜杂种优势的有效利用开辟了新的途径。惠志明(2005)进行了利用原生质体融合技术向花椰菜转移Ogura萝卜胞质雄性不育的研究,获得了花椰菜与Ogura萝卜胞质甘蓝型油菜种间体细胞杂种植株。由此可见,原生质体融合技术已经应用于花椰菜不育性的研究领域,已获得了大量的雄性不育转育植株,是一条培育雄性不育新种质行之有效的途径。
通过原生质体融合可以克服远缘杂交不亲和性,转移野生品种的抗逆性。花椰菜生产中常常遭受病虫害的威胁,而现有育种材料中存在的抗病、抗逆基因,由于长期的人工培育定向选择已日益狭窄,远不能满足进一步提高品种对病害及逆境多抗性的需要。增强对野生材料优异抗性基因的利用,是进一步创新育种基础材料的有效途径。蔬菜野生类型在长期自然选择下形成了高度的抗病性,通过与野生类型进行远缘杂交,可以大幅度提高现有品种的抗病性和抗逆性,但是远缘杂种通常表现不亲和性,严重限制了其在品种改良中的应用。利用原生质体融合技术得到的不对称杂种可以克服远缘杂交不亲和性转移野生种抗性。姚星伟(2005)利用原生质体非对称融合技术向花椰菜中转移野生种抗逆性状(供体Brassica spinescens具有光合效率高,抗白锈病、蚜虫、黑斑病和耐盐等优良特性),试验共获得17株杂种,其抗逆性在进一步鉴定中。可以看出,育种工作者越来越重视野生资源的发掘利用,生物技术中的细胞工程与分子生物学手段相结合是现阶段利用野生资源的有效途径。
利用原生质体融合技术可以转移某些品种优良品质性状,为改良花椰菜的营养品质提供新的途径。蔬菜的高产、优质一直是人们所追求的目标。P.S.Jourdan(1989)利用花椰菜与具有除草剂抗性的Brassica napus进行原生质体融合试验,获得了具有高抗除草剂特性的杂种植株。B.Navratilove等(1997)以花椰菜和抗根瘤病的Armoracia rusticana为试验材料,利用原生质体融合技术,获得了花椰菜与Armoracia rusticana体细胞杂种植株。Hu(2002)用Brassica napus和具有亚油酸和软脂酸含量高的Orychophragmus violaceus进行体细胞融合试验,通过原生质体融合试验得到的杂种植株不但亚油酸和软脂酸含量升高,而且芥子酸的含量明显下降,显著改善品种品质。
2.分子标记技术与花椰菜种质资源创新
利用易于鉴定的遗传标记辅助选择是提高选择效率和降低育种盲目性的重要手段。近20年迅速发展起来的分子标记技术给作物育种提供了新的途径。运用DNA分子标记可以进行早期选择,提高选择的准确度和育种效率,有助于缩短育种周期。
(1)利用分子标记技术筛选自交不亲和系 自交不亲和性是高等植物为实现异花授粉受精和遗传重组而形成的一种重要的遗传特性,国内外学者对自交不亲和性的遗传机制做了大量研究。据Lewis(1979)报道,已在74个科的被子植物中发现了自交不亲和性。国内利用分子标记技术筛选自交不亲和系的研究也有所报道,黄聪丽(2001)应用RAPD分析方法,得到了与花椰菜自交不亲和性相关的差异片段。宋丽娜(2005年)运用RAPD和ISSR分子标记技术,分离到鉴别自交不亲和性的连锁标记。
(2)利用分子标记技术鉴定抗病种质资源 张峰(1999)利用AFLP技术在一对花椰菜抗、感黑腐病的近等基因系中筛选到4个与抗黑腐病基因紧密连锁的标记。刘松(2002)用天津科润蔬菜研究所抗黑腐病近等位基因系C712和C731作为材料,筛选出与花椰菜抗黑腐病基因RXC连锁的RAPD标记OP224/1600,将其转化成更加稳定的SCAR标记,可快速准确筛选抗病材料。古瑜(2007年)以花椰菜抗病和感病近等基因系为实验材料,对花椰菜抗病和感病近等基因系基因组进行了ISSR分析,得到3个与抗病基因有关的分子标记ISSR11000、ISSR21500和ISSR18700,可进一步应用于分子标记辅助育种。此外,利用cDNA-AFLP技术对致病菌胁迫的花椰菜抗黑腐病系进行差异表达分析,初步得到一个与抗黑腐病相关的基因片段,并证实该片段是受诱导的与诱导系统抗性(ISR)信号传导有关的基因片段。此外,利用同源序列候选基因法和NBS profiling方法,在抗病系中得到2个抗病基因同源序列RGA330-7和NBS5-100,序列分析表明这两个片段可能与花椰菜抗黑腐病基因有关。进一步将两个RGA推测的蛋白序列与7个已知植物抗病基因的蛋白序列进行比较,构建了分子进化树。聚类结果表明,本研究得到的两个RGA片段应属于non-TIR-NBS-LRR型。最后,利用表观遗传学的分析方法,对致病菌胁迫前后基因组中胞嘧啶甲基化水平和甲基化模式的变异进行分析,从基因表达调控的角度探讨了抗黑腐病的分子机制。
(3)利用分子标记技术检测遗传变异 突变既可以发生在整个基因组,也可以发生于特定的基因或基因簇、结构基因、调节基因,以及单个核苷酸等。突变既可以自发也可以人工诱变在不用诱变剂处理的培养植物细胞中,突变体频率一般为10-5~10-8,用诱变剂处理,可增至10-3,但诱变剂常会引起育性降低等副作用。Leroy(2000,2001)等利用花椰菜下胚轴进行组织培养,用ISSR方法检测了愈伤组织形成过程、胞增殖过程以及成苗后的再生植株等各阶段的植株间多态性,认为组织培养诱导的再生植株具有遗传多态性,证明组织培养可诱发与筛选遗传变异。
(4)利用分子标记技术筛选花椰菜雄性不育种质资源 植物雄性不育是一种不能产生有活力花粉的遗传现象,在植物界中广泛存在,目前已在43科162个属320个种的617个品种或种间杂种中发现了雄性不育现象,它在作物杂种优势利用上具有重要价值。
Chunguo Wang(2006)以花椰菜雄性不育品种NKC-A和恢复系NKC-B为材料,利用引物P6+/P6-进行PCR扩增,发现了一条300bp的差异片段,此片段可以作为鉴别雄性不育系的分子标记。王春国(2005)利用同源序列的候选基因法,通过检索NCBI核酸以及蛋白数据库,获得花椰菜kndx612细胞质雄性不育相关的基因或开放读码框,初步结果显示试验所用不育花椰菜胞质亦可能为Ogura型,为进一步从分子水平研究和利用花椰菜雄性不育基因提供了条件。
(5)花椰菜遗传连锁图谱的构建及在育种中的应用 遗传连锁图谱是指以染色体重组交换率为相对长度单位,以遗传标记为主体构成的染色体线状连锁图谱,分子标记遗传连锁图表示各标记所对应的DNA片段在染色体上的相对位置,是分子标记运用于作物遗传育种的基础,构建分子标记连锁图的理论基础是染色体的交换和重组。自1986年以来,主要农作物都已建立了以RFLP为主的分子遗传图谱,分子标记连锁图,是进行基因定位、基因克隆、辅助选择进行作物设计育种的技术平台。在遗传学理论、功能基因组学以及遗传育种等领域已显示出了十分重要的作用。
Li(2001年)等利用SRAP、AFLP技术对86个羽衣甘蓝×花椰菜的RI作图,此图由130个SRAP标记和120个AFLP技术构成,这些标记非常平均地分布在9个连锁群,覆盖2165cM。古瑜(2007年)利用AFLP和NBS profiling两种方法,以花椰菜品种间杂交F2代为作图群体,构建了第一张花椰菜遗传连锁图谱。该图谱包括9个连锁群,连锁群的总长度为668.4cM,相邻标记间的平均图距为2.9cM,在所包含的234个AFLP标记和21个NBS标记中NBS标记分布于8个连锁群且在基因组中成簇排列。该图谱通过提供可能的抗性基因位点,对进一步得到抗性基因很有帮助。同时研究RGA在整个花椰菜基因组中的分布与组成,也为了解抗性基因的分布与演化提供参考。进一步可用于分子标记辅助育种。
(6)花椰菜不同花色种质资源的创新 近年来,利用基因工程技术已经获得了许多传统园艺技术难以获得的新品种,如紫色、白色以及紫白相嵌的3种不同颜色的矮牵牛花。而这些技术通常要求对相关基因有所了解,以获得目的基因的cDNA,然后将这些外源基因导入目标植物中,达到改变花色、花型等目的。Crisp等利用遗传上一致的白色花球品种和绿色品种杂交,从杂交后代遗传表现提出一种模型:Wiwi基因控制白色对黄色是显性,非独立共显性基因gr1gr2表现为绿色。Dickson报道了在埃及引进的花椰菜品种PI 183214,即便完全暴露于阳光下,花球也是纯白色的。并认为是由2或3对显性基因控制的。Singh等报道了由两对基因控制的可以遮盖住花球的叶片,以防止阳光照射引起的花球变色。李凌等(2000)对花椰菜黄花和白花的近等基因系进行了研究,筛选到了一个白花株系的特异带,通过Northern点杂交初步鉴定其为白花株系所特有,同时利用Smart cDNA-AFLP银染技术对花椰菜黄花近等基因系的mRNA进行了分析,其中2对引物的3条带在2个表达基因文库之间存在多态性,其中一条与白花品系共分离;筛选到一条白花株系的差异片段,本研究为克隆与花色相关基因奠定了基础。
3.转基因技术与花椰菜种质资源创新
转基因技术的发展对加速创新花椰菜种质资源具有重要意义。目前,已育成一大批雄性不育、抗病、抗虫、品质优良的花椰菜新品种,并产生了很大的社会和经济效益。
(1)花椰菜雄性不育种质资源创新 近年,花椰菜雄性不育研究取得了进展,已从中找出一些与不育相关的基因或者嵌合体。这对进一步阐明花椰菜雄性不育发生的分子机理,指导新不育系的培育打下了基础。Bhalla(1998)把与花粉相关的基因Bcp1整合到质粒PBI101中,通过根瘤农杆菌介导转入花椰菜子叶中,获得了50%花粉不育的花椰菜不育新种质。
(2)花椰菜抗病虫种质资源创新 在花椰菜抗病基因的克隆和转移方面也有报道,张桂华等(2001)以花椰菜栽培品种“春秋”为试验材料,在携带CaMV Bari-1基因Ⅵ的根瘤农杆菌菌种GV3101的介导下,获得了经筛选转化的花椰菜转基因幼苗,为培育抗花椰菜花叶病毒型品种提供可能。
花椰菜转基因抗虫研究中最常用的外源基因有两种:内毒素(Bt)基因和豇豆胰蛋白酶抑制剂(CpTI)基因,这两种基因已经成功转入花椰菜中,为利用转基因技术创新花椰菜种质资源提供了宝贵经验。
华学军(1992)、蔡荣旗(2000)、徐淑平(2002)、周焕斌(2003)等都利用农杆菌介导将Bt基因转入花椰菜中,成功获得了转基因植株。
CpTI基因属于Bowman-birk型丝氨酸蛋白酶抑制剂,能抑制包括鳞翅目、鞘翅目、直翅目等多种害虫中肠中胰蛋白酶的活性,具有广谱抗虫性。吕玲玲(2004)通过根瘤农杆菌介导,将豇豆胰蛋白酶抑制剂(CpTI)基因整合到花椰菜植株的基因组中,对鳞翅目虫害青虫的生长发育有一定的抑制作用。徐淑平(2002)用根癌农杆菌介导的遗传转化法将Bt基因和豇豆胰蛋白酶抑制基因(CpTI)导入花椰菜,获得了转基因花椰菜植株。Ding(1998)等利用农杆菌介导,从当地甘薯中分离得到的抗虫基因TI转入花椰菜中,结果表明,转基因植株比对照植株抗虫效果明显。
(3)与花椰菜花球性状有关的突变基因的研究进展 Bowman(1993)等首先在拟南芥中发现了花球突变体cauliflower。随后Kempin SA(1995)等从拟南芥中分离得到两个与花的分生组织活性有关的CAULIFLOWER和APETALA1基因,研究表明:其功能为转录因子。同时对花椰菜栽培种中该基因的同源基因研究发现:花椰菜中其同源基因是无功能的。这暗示了花椰菜肉质花序形态的形成机理与该基因密切相关。Purugganan(2000)等研究了野生型和栽培型花椰菜中CAL基因的多态性,发现野生型和栽培型CAL基因存在差异,栽培型花椰菜中该基因的第五个外显子有一个等位基因位点发生了突变。Lee B.Smith(2000)以BoCAL和BoAP1两个隐性等位基因在特殊位点上的分离为切入点,研究了花椰菜花球的起源和进化过程,得到花球发育的遗传模式,认为:BoCAL-a等位基因与离散花序的形态之间存在很强的相关性。以上的结果都表明:CAL基因的突变抑制花分生组织发育,这是花椰菜花球形成的遗传基础。赵升等(2003)、曹文广(2003)、李小方(2000)通过把甘蓝BoCAL基因转入花椰菜中,转基因花椰菜不能形成花球,证实外源基因BoCAL能够部分补偿花椰菜BobCAL基因功能的丧失,部分恢复花椰菜的花球表型。因此可以通过控制BoCAL基因的突变程度和基因的表达水平,调节花球的发生时间和发育速度,从而为培育结球紧实度高的花椰菜新品种提供新的途径。
在生产实际中,花球采收后,其内源激素和营养成分的变化造成内在品质逐渐降低,严重的影响产品的商品性和食用的营养价值。花球的衰老首先出现在萼片的叶绿素丧失。乙烯的合成与叶绿素的丧失以及随后的黄化成因果关系。ACC氧化酶(ACO)是乙烯合成的一个限速酶,并且ACO基因的表达调控着乙烯的生成速率。从基因上对ACO基因的表达进行调控,可延缓乙烯的生成,这已经在许多作物上获得成功。陈银华(2005年)根据亲缘关系较近的几种作物ACC氧化酶氨基酸序列,设计一对简并引物,从花椰菜基因组中获得长1202bp的候选片段,并获得花椰菜抗衰老的新材料。
摘 要:羊草是一种优质牧草。对发展我国优质草地畜牧业具有重要意义,以往研究对羊草生物学以及生理生态学进行了比较深入的探讨,但对于羊草分子生物学的研究起步较晚,进展也比较缓慢,近年来,随着分子生物学研究手段和技术的进步,以及羊草遗传改良的需要,人们在羊草遗传多样性、愈伤组织培养、酶蛋白分析以及基因克隆与转化等研究领域陆续开展了一些有益的尝试,并取得了重要的研究成果,结合科研工作的需要,对羊草分子生物学的最新进展进行了概述,并就亟需解决的问题进行了分析,提出了该领域今后的发展方向。
关键词:羊草;分子生物学;遗传多样性;组织培养;基因克隆
中图分类号:S543.901 文献标识码:A 文章编号:1007-7847(2007)04-0289-06
羊草(Leymus chinensis)是多年生禾本科赖草属草本植物,由于其环境适应性较强。具有耐寒、耐旱、耐盐碱等优点而成为松嫩平原的优势物种,同时羊草也是一种重要的牧草资源,蛋白质含量高,适口性好,耐践踏,在发展草原畜牧业方面具有重大的经济和社会效益,但羊草种子发芽率低、种子萌发最适pH值为8.0~8.5,加上过变放牧和草地盐碱化日益加重等原因,我国现存系统管理重点实验室项目(K09M6)羊草草地约有90%以上发生了不同程度的退化,因此,研究羊草的遗传分化、抗逆机理、栽培育种以及转基因等对于改善生态环境和草场建设具有重要意义,随着分子生物学对各个学科的交叉渗透,使羊草的研究从细胞水平进一步深入到分子水平,羊草属于异交植物,物种趋向于在种群中具有较高水平的变异性,仅在松嫩草原中西部靠近内蒙古高原东部草原上的羊草种群就数以千计,这为研究羊草种群的遗传多样性提供了对象,培养愈伤组织是进行羊草转基因研究的前期工作,但诱导率低的问题尚未得到解决,笔者结合自己的科研工作,对羊草分子生物学领域的研究成果加以综述,旨为羊草抗逆分子机理研究提供参考资料。
1 羊草遗传多样性研究
由于羊草生态适应性强、分布范围广、生境类型多样,在长期的适应和进化过程中,羊草种群之间在形态、生理、生态以及遗传特征方面均产生了趋异,RAPD(randomly amplified polymorphic DNA,随机扩增多态DNA)技术可以在对被检对象无任何分子生物学资料的情况下对其基因组进行分析,而且具有费用较低、方便易行、模板DNA用量少、不需要同位素,在安全性和实验操作上具有比AFLP(amplified fragment length polymorphism,扩增酶切片段多态性)、SSR(simple sequence rc-peat,微卫星重复序列)等分子标记更加简便易行等优点,从而使其成为目前研究羊草遗传多样性的最重要的手段之一,该技术主要是利用各种群羊草的总基因组DNA作为模版,筛选能够扩增出具有明显差异性条带的随机引物,以至少两次重复均出现的结果做0,1矩阵图,即有条带记为1,无条带记为0,计算总片段数及多态位点百分率、各种群间遗传相似系数和遗传距离,利用分析软件进行聚类分析从而得到其遗传结构树状图,
羊草RAPD分析可以用于研究羊草的种群关系以及遗传分化的影响因子,崔继哲等应用RAPD技术证明相似生境或同一地域的种群在一些位点上表现出相似或相同的变化,刘惠芬等运用RAPD技术对内蒙古典型草原不同生境8个羊草种群进行分析,聚类结果显示生境相似的种群能够聚在一起,而地理距离最近的种群不一定归为一类,说明小范围内羊草种群间的遗传分化与地理距离不存在相关性,而与其生境间的相似度相关,影响遗传相似性的不是单一因子而是各种因子的综合作用,较小地理范围内羊草种群间的遗传分化主要是由环境的异质性所引起的,笔者曾以采自中国大安碱地生态试验站(N45°36′,E123°53′)的羊草种子单株播种栽培,以每株羊草幼苗的地上部为材料进行RAPD分析,30个实验样品的平均遗传距离为0.1909,共可分为4个类群(待发表),通过RAPD分析,还可以进一步将羊草遗传分化多样性的原因具体化,汪恩华等””利用分子标记与形态标记以21个有效随机引物中对9份羊草材料进行RAPD分析,对随机抽取的17份禾草种质进行了种质评估的比较研究,结果表明,羊草种质的小穗数、种子千粒重、叶色、有性繁殖量和结实率5个形态学指标与遗传多样性指标存在一定的相关性,应用RAPD技术对不同生境羊草在水分胁迫下游离脯氨酸含量的变化做聚类图比较分析,证实水分是影响羊草种群间遗传变异和生态型分化的一个最主要的因子,虽然水因子是影响羊草分化的一个主导因子,但是在实际研究工作中也认识到羊草变异和分化是多种生态因子综合起作用的结果(如温度、海拔、经纬度、土壤类型等),而且各因子之间又是相互影响,在不同的生境中限制因子又是变换的,这就造成不同地理种群的羊草遗传分化过程的复杂性,由此可见,目前以羊草为实验材料的RAPD分析虽有许多报道。但是由于羊草本身具有较高的种群变异性。组成羊草群落的植物总计有357种,加之尚缺乏一种统一的标准分型方法,因此RAPD技术就成为研究羊草分类及来源的主要工具,在物种鉴定及遗传分化研究中发挥着重要作用。
除了RAPD技术以外,等位酶技术也可用于羊草遗传多样性分析,等位酶是指由一个位点的不同等位基因编码的同种酶的不同类型,其功能相同但氨基酸序列不同,崔继哲等通过该技术,综合分析了松嫩平原11个羊草种群的遗传多样性及遗传分化指标,深入剖析了灰绿型和黄绿型两种叶色类型羊草种群之间的遗传差异,证明种群间的遗传距离与地理距离之间没有相关,崔继哲等还采用淀粉凝胶电泳技术,应用等位酶分析方法测定了松嫩平原南部微生境下羊草灰绿色和黄绿色两种生态型9个种群的遗传多样性和遗传分化程度,证明羊草种、种群和生态型水平都维持较高的遗传多样性,两种生态型之间有明显的遗传多样性差异及遗传分化,另外,对不同生境、不同分类种群的遗传结构分析发现羊草种群遗传变异度很高,但是无论如何归属,松嫩草原上的羊草种群遗传分化程度很低,推测可能与羊草为异花授粉、不同类型混生及种群间基因流强度大有关,刘杰等曾用SSR作为探针构建了羊草的遗传指纹图谱,为羊草种质资源评价、种间及种内亲源关系分析、生物多样性研究提供了有效手段,利用AFLP方法对我国不同地区分布的羊草材料进行的DNA多态性分析结果也表明了羊草基因组DNA具有比较丰富的多态性。
2 羊草愈伤组织培养及利用
植物组织细胞培养(plant tissue and cell cul-ture)是通过运用植物组织细胞培养技术实现植物育种获得新品种的一条快捷途径,既可以通过 花粉培养、未授粉子房以及胚株培养等诱导形成单倍体植物,也可以通过植物愈伤组织培养中普遍存在的染色体变异实现植物突变育种,另外,通过植物组织培养技术进行的植物细胞融合(尤其是原生质体融合)、胚胎培养以及植物体外受精技术可获得远缘杂交种,通过植物组织培养中的茎尖培养能够产生无病毒原种,因而可用于植物脱毒,解决生产实践中植物病毒危害问题,组织培养是植物细胞工程学、遗传学、植物生理学、生物化学与分子生物学研究的重要基础,不仅用于快速繁殖。还用于单倍体育种、种质保存、生理学研究和基因转化等领域。
早在上世纪80年代,高天舜就利用羊草根茎作为外植体进行愈伤组织的诱导和植株再生材料,目的是为了改良羊草的遗传性状,试图通过组织培养途径获得羊草新类型,该研究采用当年生羊草根茎幼嫩部分的节间基部切段以及隔年生老根茎和当年生根茎的芍间中部、顶部切段作为外植体,消毒处理后接种于3种MS培养基中,先进行暗培养。待长出愈伤组织后转入光照培养,诱导率平均在20%左右,分化率最高也只有24.2%,羊草幼穗和成熟种子也可作为诱导愈伤组织的外植体,刘公社等,以幼穗作为外植体,恒温25℃条件下诱导愈伤组织,在加有1mg/L2,4-D MS培养基上继代2次后,转移到含1.0mg/L KT和0.5mg/NAA的MS培养基上分化培养得到再生芽,并在无激素的基本培养基上获得了生根的试管苗,移栽到温室后可正常生长,尽管从羊草叶片、幼穗和成熟胚在同样培养条件下均能诱导出愈伤组织,但只有幼穗愈伤组织能够继续分化出再生植株,但分化率因基因型和外源激素的不同而不同,以成熟羊草种子为外植体诱导愈伤组织具有操作简便、污染程度低、材料选择直观化的优点,且诱导率和幼苗分化率较高、幼苗健壮、生长势好,崔秋华等采用3种培养基(MS、B5和8114),3种2,4-D的浓度水平(1、2、4 mg/L)培养羊草幼嫩根茎和种子,结果表明,以种子作为外植体可获得较高的愈伤组织诱导率(29.05%),但目前对于最适激素浓度没有统一结论,其范围从1~4mg/L不等,对愈伤组织的诱导效果也未达到令人满意的水平,仍需要深入研究。
在对羊草愈伤组织的应用方面,可以以羊草种子诱导出的愈伤组织为材料,用含有NaCl的培养基和含有NaHCO3与Na2CO3的混合盐培养基进行培养,测定羊草愈伤组织的耐盐性,结果表明羊草愈伤组织对NaCl最大耐受强度为180mmol/L;对NaHC03与Na2CO3的混合盐的最大耐受强度为4mmol/L中性盐(NaCl)与碱性盐(NaHCO3与Na2CO3)对羊草愈伤组织的胁迫机制明显不同,国内外对于愈伤组织的培养大多应用于转基因,但在羊草方面进行的该项研究却很少,刘公社将携带PAT基因的质粒通过基因枪法转化羊草愈伤组织。然后在筛选培养基上进行培养,筛选抗性愈伤组织并转接到分化培养基上,得到再生苗,然后接种到含有筛选剂的生根培养基上培养后得到转基因羊草小苗,该研究已获得耐除草剂的羊草新品种专利,曲同宝等用基因枪将BADH基因转入由羊草成熟胚诱导出的胚性愈伤组织中,获得了转基因植株,经过PCR检测证明外源基因已整合到羊草基因组中并得以表达,虽然转入羊草的基因都可被检测到已整合人羊草基因组中,而且也得到表达,但是对于转基因羊草对周围生态环境的影响还未见相关报道,筛选突变体是羊草愈伤组织的另一用途,陈晖等用组织培养方法筛选获得羊草抗羟脯氨酸(HYP)变异系HR20-8,该变异系细胞内游离氨基酸和蛋白质组分氨基酸含量均发生了较大的变化,与供体对照比较,分别提高2.35倍和1.40倍,其中,游离脯氨酸和蛋白质组分脯氨酸分别提高6.6倍和3.0倍,且脯氨酸合成途径必需的r-谷氨酸激酶的活性提高了2.5倍。
3 羊草酶蛋白类研究
蛋白质是生物体生命中的第一重要物质,是生理功能的执行者,是生命现象的直接体现者,同时能够调控相关基因的表达,植物对抗非生物胁迫必然有蛋白质的参与,比如耐冷蛋白、热休克蛋白、水通道蛋白、赤霉素信号传导蛋白等,从羊草中检测这些蛋白的含量以及克隆表达该蛋白的基因对于研究羊草耐逆分子机理和改善羊草品质都具有重要意义。
目前对于羊草酶蛋白的研究还远远不够,主要有细胞色素氧化酶、过氧化物酶、脂酶同工酶等,其应用也仅局限于阐明羊草的遗传分化,通过聚类分析可以研究羊草种群在不同地理及生态环境中羊草在分子水平上细胞色素氧化酶同工酶存在着种内分化,羊草在同工酶水平上的分化受多个环境因子的综合影响,而且与羊草耐寒性能存在一定的内在联系,张丽萍等对采自同一天然草地上叶片呈黄绿色、灰绿色两种类型羊草的根、茎、叶的过氧化物同工酶、脂酶同工酶进行了分析比较,结果表明,两种叶色羊草,其相同组织的过氧化物同工酶谱及脂酶同工酶谱基本一致,两种羊草叶片呈现不同颜色只属不同生态型,
磁场处理不仅可以促进羊草的生长。而且还能提高羊草的抗盐碱性,磁场使羊草过氧化物酶(POD)活性提高,并且诱发了一条新的同工酶带,张卫东等认为羊草自交不孕的原因是自交不亲和性障碍。并利用禾本科植物自交不亲和性有关的硫氧还蛋白(thsioredoxin)^基因设计的引物在羊草DNA中检测到预期片段,说明硫氧还蛋白h基因可能与羊草的自交不亲和性有关,该基因现已被克隆并能够从GenBank中查到其序列。
研究羊草草原土壤酶的活性可以判断土壤的肥力,土壤肥力水平接近则土壤酶的活性相似,土壤蛋白酶、脲酶、多酚氧化酶的活性与土壤有机碳、全氮呈显著相关关系,可以反映土壤肥力水平高低,是评价土壤退化的重要指标。
4 羊草耐逆基因的分离与克隆
羊草具有耐寒、耐旱、耐盐碱的特性,并且蛋白质含量较高,说明羊草在面对非生物胁迫时高效表达能够适应、缓解或对抗相应逆境条件的物质,尤其是调控这些物质表达的酶类基因,据报道,羊草种子个体萌发期最大忍受pH范围是9.14-9.53,对于NaCl可耐受的最大强度为600mmol/L,对于Na2C03可耐受的最大强度为175mmol/L,为了弄清这种适应机制的复杂性,通过大规模的cDNA克隆或者表达序列标签(EST)的测序分离相关基因是非常重要的,Jin等采集自然生长的植物叶组织经过Na2CO3胁迫处理构建了cDNA文库,并对其EST进行测序对比分析,推断在羊草叶和根中各有39和31个非生物胁迫相关基因,这些EST资源将有助于对植物耐盐碱分子基础的深入研究和理解。
甜菜碱是在生物体内起着渗透保护作用最主要的细胞相溶性物质,编码决定该物质合成的关键酶一甜菜碱醛脱氢酶(BADH)基因已经先后从多种生物体内得到克隆,并在多种植物中进行了遗传转化。已获得了抗盐、抗寒、耐旱能力得到较大程度提高的转基因植株,某些植物体内的甜菜碱含量和BADH活性随着土壤盐碱化程度的加重而增加,因此推测甜菜碱可能与羊草耐盐碱性有关,目前羊草中的部分BADH基因片段也已经被成功克隆。
5 问题与展望
分子生物学技术自其应用以来,以其不可逆转的渗透能力和交叉能力与各个学科齐头并进、相辅相成、共同发展,许多生物现象的机理机制都要最终依赖分子生物学手段予以阐明,以往对羊草生物学以及生理生态学进行了比较深入的探讨,但对于羊草分子生物学的研究起步较晚。进展也比较缓慢,近年来,随着分子生物学研究手段和技术的进步,以及羊草遗传改良的需要。人们在羊草遗传多样性、愈伤组织培养、酶蛋白分析以及基因克隆与转化等研究领域陆续开展了一些有益的尝试,并取得了许多重要研究成果,今后应在分子水平上,如对羊草自交不亲和性,非生物胁迫耐受机理,种子休眠机理,关键酶基因的分离克隆与转化,转基因羊草对周围环境的潜在影响等诸多方面加以深入探讨与研究,必将为羊草资源的保护和合理利用提供充分的理论基础。
作者简介:孔祥军(1980―),男[满],河北承德人,博士研究生,主要从事植物抗逆分子机理研究;梁正伟(1962―),男,吉林长春人,博士,研究员,博士生导师,通讯作者,主要从事植物逆境生理生态与分子生物学研究。
本文地址:http://dadaojiayuan.com/cha/45374.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
上一篇: 甘薯复合茎尖袋泡茶的配方与工艺研究
下一篇: 龙井茶的那些美丽传说