中国科学院上海药物研究所科学家在与老年痴呆形成相关的淀粉样多肽(β-amyloidpeptide,Aβ)构象变化机理研究方面取得重要进展,首次在原子水平捕捉到Aβ在水溶液中从琢-螺旋到β-折叠的构象转变,并发现其原因是疏水C端四个甘氨酸的有序排列,提出了该变化具有序列依赖性的观点。4月12日,该研究结果发表在国际权威期刊《美国科学院院刊(PNAS)》上。
Aβ是老年痴呆病理特征中淀粉斑的主要成分,由β-分泌酶和酌-分解淀粉样前体蛋白得到,一般包含39~43个氨基酸。在正常生理条件下,人体内存在纳摩尔级浓度的Aβ,但是在一些特定的条件下,由于淀粉样前体蛋白和早老素基因等发生错义突变,导致Aβ大量产生并聚集,继而引发老年痴呆的一系列病变反应。实验研究表明,Aβ在聚集状态下以β-折叠为主,而非聚集时则根据不同的环境采用不同的构象,如在生物膜和有机溶剂中以琢-螺旋为主,在水溶液中则以卷曲为主。但是由于Aβ非常容易聚集和构象转变所需时间非常短,因此,Aβ从琢-螺旋到β-折叠或者从卷曲到β-折叠的构象转变过程到目前为止仍然无法用实验方法测定,而理论计算模拟可以弥补实验研究的不足。
中国科学院上海药物研究所药物发现与设计中心蒋华良和沈建华Aβ进行了大规模的分子动力学模拟研究,对Aβ的构象变化与其聚集机理进行深入系统的阐述。通过对Aβ在水溶液和磷脂双层中的多次长时间分子动力学模拟(模拟时间接近1微秒),第一次在原子水平上捕捉到Aβ在水溶液中从琢-螺旋到β-折叠的构象转变;通过残基突变找到导致这种构象转变的原因是疏水C端四个甘氨酸的有序排列,从而提出了Aβ的构象变化具有序列依赖性的观点。他们还模拟了Aβ在磷脂层中的构象变化分子动力学行为,发现Aβ从其前体蛋白水解后趋向生物膜表面运动,而且与水溶液中的构象变化不同,在磷脂双层中Aβ没有形成β-折叠结构,并对Aβ在不同环境中的不同构象变化以及导致其向β-折叠结构转变的关键因素进行分析。这些研究为阐述Aβ在老年痴呆致病过程中的作用机理及设计阻止Aβ聚集的药物奠定了基础。
目前,上海药物研究所科研人员正根据Aβ新药的设计。
你说的这个是真的,我也看到了,官方报道还能有假?!话说,在百度了解到我国干细胞临床研究这几年的发展还是蛮迅速,国内相继颁布政策支持干细胞领域创新研发应用,干细胞研究涌现出了一系列重要科研成果,此外,博雅这样的行业机构也在干细胞临床研究投入了大力的精力,相信未来干细胞一定能为咱们人类健康提供更好的服务。
核酸二级结构一般是指DNA双螺旋结构,RNA一般比较flexible,以线性存在,但在分子生物学中也经常出现RNA二聚体这样的形式,或像tRNA这样的也具有二级结构
蛋白质的二级结构指的是在其一级结构的基础上进一步折叠,其中可看到的折叠形态有alpha helices, beta sheets, beta turn和一些loop结构,这些结构一起构成了蛋白质的二级结构
今年是中国科学家人工合成结晶牛胰岛素44周年。1965年9月17日,中国科学院生物化学研究所等单位经过6年多的艰苦工作,第一次用人工方法合成了一种具有生物活力的蛋白质———结晶牛胰岛素,作为中国人的骄傲,许多人认为,这是中国科学家与诺贝尔奖距离最近的一次。它和“两弹一星”研究一样,也是中国人在科学领域的面子———不但证明了
中国人是聪明的,增强了中华民族的自信心,还证明了中国在科研领域可以和西方发达国家相竞争,甚至在一穷二白的基础上做出世界一流的成果。
40年来,围绕这项工作,已经出现过数以千计的各种形式的报道。但是,在这个为期六七年的研究中,还有一些鲜为人知的故事,其中,被探究得最少的可能是1960年前后的“大兵团作战”。
以科学家为中心
人工合成胰岛素课题于1958年12月底正式启动。由于工作非常艰难、工作量非常大,而自己既缺乏有机合成经验,人手又不够,所以刚一开始,课题的首倡者中国科学院生物化学研究所就先后请求与中国科学院有机化学研究所、北京大学化学系有机教研室合作。有机所不肯加入,而北京大学很快就同意了。经过几轮磋商,1959年3月,生化所和北大化学系签定了合作协议。刚刚于1958年由生化所协助建立的复旦大学生物系生化教研室也想参加胰岛素合成工作。生化所不太愿意,只同意让它参与做一点天然胰岛素的制备工作,没把它列为正式的协作单位。
北京大学的相关工作由有机教研室主任邢其毅教授、研究组组长张滂教授领导。他们和陆德培等4位青年教师、季爱雪等4位研究生一道,带领有机专业的十多名应届毕业生以毕业论文的方式开展合成研究。而生化所则建立了由邹承鲁、钮经义、曹天钦、沈昭文等人分别负责的5个研究小组,他们各带了一批年轻的科研人员,分头探路———因探路成功而一直延续下来了的只有由邹承鲁负责的天然胰岛素拆、合小组和由钮经义负责的胰岛素肽链有机合成小组。
经过一年的探索,到1959年底时,他们虽然未能像早期计划的那样完成胰岛素工作,但也已获得拆、合天然胰岛素等几项重要的成果。这不但基本解决了合成工作大的路径问题,还给一些领导干部造成了该研究只剩了“堆肽”技术活的印象。
北京大学开展群众运动
就在这时,“反右倾”运动迎面扑了过来。就像“大跃进”运动导致了胰岛素人工合成课题的提出一样,1959年的“反右倾”运动也影响了胰岛素工作的研究方式。作为直接的导火索,它给胰岛素工作带来了一种富有时代特点的科研方式———“大兵团作战”。
很多年以来,北京大学一直处于时代的漩涡中心,这一次,又率先响应了上级的号召,最早开展了轰轰烈烈的群众运动。1959年底,在新调来的系党总支书记的领导下,化学系的学生对自己的老师展开了猛烈的批判,批判他们信心不足、固步自封、按部就班、有名利思想、走白专道路、奉行“爬行主义”、小团体主义和本位主义,在科学研究方面搞神秘论,把科研工作进行得“沉沉闷闷”、“冷冷清清”,等等。
批判结果之一是胰岛素合成工作的领导班子被彻底改组:原来的领导人中,张滂被开除出胰岛素合成队伍,留下来的邢其毅也因为“对合成胰岛素不积极”而不再对这项工作具备发言权。改由1958年才毕业留校的一位青年教师负责业务工作;1960年4月时,又有十多位同学提前3个月毕业,作为“会战组”党支部委员加入了领导班子;新来的系党总支书记直接领导他们。在这些缺乏科研经验的新班子的指挥下,北大化学系及少量生物系“革命师生”共约300人“参加了这场科研大战”,一大批“连氨基酸符号还不认识”的青年教员和三、四、五年级学生成了胰岛素研究的“尖兵”,成了“科研的主力军”。他们“从无到有,从不会到会”,“不懂就学,遇到困难就学毛主席著作”。
在这些人看来,合成多肽是一件非常简单的事:“把两段多肽倒到一起,就叫合成了一个新的多肽———也没问是否发生了反应,具体产物是什么东西。”邢其毅等“老”科学家和原来那些比较“右”的青年教师当然不太认同那些做法,但他们不敢说,只能根据组长、小组长等人的指示执行属于自己的工作。于是,北京大学的进展奇快,“仅用两个星期就完成了4、7、5、5四个肽段”;再花两个星期,到1960年2月17日,就“用两种方法同时合成了胰岛素A链上的12肽”;随后,于“4月22日合成了A链”。
受北大化学系群众运动的激发,1960年1月下旬,“在整风反右倾的基础上”,生化所也开始大量抽调工作人员支援原有的两个研究小组。经过几次“苦战十昼夜”,他们也在4月20日前“合成了B链30肽”。
复旦大学加入竞争
正当北大化学系和生化所的科研“竞赛”进行得如火如荼的时候,复旦大学生物系横空杀了进来。1960年1月30日,在上海市委、上海市科委和复旦大学党委的支持下,复旦大学生物系某党支部委员组织了六七十位师生(其中2/3是一至三年级的学生),开始另起炉灶,单独筹划胰岛素人工合成工作。3月25日,“为了迎接市工业会议的召开”,他们“进一步大搞群众运动”,组织了120名师生——包括复旦大学生物系生化专业四个年级所有的大约80名学生——“边干边学”,热火朝天、不分昼夜地进行胰岛素合成。其方法和北京大学化学系的学生所做的类似,都不对中间产物作分离和鉴定,只是拼命往后赶。当时的生物系生化教研室主任沈仁权副教授比较内行,但她被搁到了一边,对这项工作没有发言权。于是,复旦大学所报出来的进度也非常快,“在4月22日完成了B链30肽”。
1960年4月19-26日,以稳定基础研究工作为重要主题的中国科学院第三次学部会议在上海举行。在这个会议上,由中科院生化所、北京大学化学系、复旦大学生物系三个单位所主演的胰岛素合成戏剧达到了高潮:它们先后向学部大会献了礼,分别宣布自己初步合成了人工胰岛素B链、A链以及B、A二链!北大的代表还乘飞机把自己合成的A链带了过来。听到这些振奋人心的消息,聂荣臻、郭沫若等领导兴奋异常,他们不但发表了热情洋溢的讲话,还于当天晚上在中苏友好大厦为全体相关人员举行了盛大的庆功宴,只留了拆、合小组的杜雨苍和张友尚在实验室里进行人工胰岛素A链和人工胰岛素B链的全合成工作。聂荣臻和大家一道都在那儿等着,要求他们一出成果,马上敲锣打鼓过去报喜。新华社也已经写好了报道稿———标题为“揭开生命现象的神秘面纱我国对人工合成蛋白质已建功勋”。一切都只等他们的好消息。但直到宴会结束,垂涎欲滴的他们也没有离开实验室。
4天之后,拆、合小组仍没能合成人工胰岛素。这时,复旦大学又爆出喜讯:他们首次得到了具有生物活性的人工胰岛素!上海市长随即在人民广场宣布了这件大喜事。消息刺激了北京市委,他们给北大发指示,说:咱们搞北京牌的胰岛素;中国那么大,搞两个胰岛素也不算多;可以互相验证。要求北大也进行B链合成,也单独合成胰岛素。于是,北京大学只好于1960年5月1日“又开辟了第二个战场”,成立了新的B链组,大搞B链的合成。
科学院开展“特大兵团作战”
上海市委和北京市委的竞争也给中国科学院党组带来了很大压力。为了在竞赛中胜过高等教育部,在院党组正、副书记张劲夫、杜润生的亲自督促下,1960年5月4日,中国科学院上海分院党委书记王仲良决定亲自挂帅任总指挥,组织了由有机所党总支书记边伯明任副总指挥,生化所所长王应睐、有机所代所长汪猷、生化所副所长曹天钦任正副参谋长,生化所青年科技工作者李载平任具体指挥,生化所党支部书记王芷涯负责后勤保障工作的指挥部,指挥生物化学所、有机化学所、药物所、细胞生物学所、生理研究所等五个研究所进行“特大兵团作战”。在当晚举行的“第一次司令部会议”上,生化所党支部提出,“要以20天时间完成人工全合成”。王仲良要求抢时间,在“半个月内完成全合成”。最初不肯参加这项工作的汪猷接着表态:“既然分院党委决定,我们立即上马……半个月太长,要在一个星期内完成。”就这样,在有关领导“这是一个重大的政治任务”、“拿不下来就摘牌子”的敦促下,科学院上海分院开始了风风火火的群众运动。
5月5日,相关研究所共派出344人参加这项工作。他们打破了原有的所、室、组的正常建制,组成了一个混合编队,下属多个“战斗组”,统一安排。战斗组组长一律由青年人担任,原来担任组长的研究员改当组员;生化所一个肽组的组长甚至是一位连多肽都未见过、新近从中国科学院山西分院过去的进修生。他们“采取了一日二班制的办法”,建立了工作流水线。虽然有很多人并不愿意放下自己手头原有的研究转到这项工作中来,但既然党的领导干部在亲自指挥这项工作,他们也普遍表现得很积极。很多人“每天除了几小时的睡眠,其他的时间都在试验台旁度过”;“有人甚至把铺盖搬进实验室”,根本不怕有毒的药品,根本不顾及自己的身体健康。还有些工作骨干“甚至两天不睡”,以至于领导下决定“必须……安排骨干分子的休息睡眠”。
可胰岛素人工合成毕竟是基础科学研究,和军事斗争、工农业生产有一定区别。在这里,“一个人卅天的工作等于卅个人一天的工作”并不成立。这么多人忙了7天、15天、20天、一个月,依然没有实现最初的目标。50天后,人工合成的A、B链终于“正式进行会师”,可非常令人遗憾,“总的情况是人A人B(编者注:人工合成胰岛素A链、B链)全合成没有出现活力”。不但如此,在随后的20天内,“合成A链进行三次人A天B(编者注:人工合成胰岛素A链、天然胰岛素B链)测定,结果均无活力”。
王应睐一直心怀整个国家的生化事业,对这种费钱、费力而不讨好的研究方式急在心上,早就想将其停下来。1960年7月底,他终于鼓起勇气向中国科学院党组的领导反映了自己的想法,强调人太多没有好处,专业不对口的在里面起不到什么作用,还是应该减少一点,让队伍精干一点,都是熟悉业务的人,这样进展会更快。张劲夫和杜润生与科学工作者是比较贴心的,发动大兵团作战一段时间后,见效果不明显,就认真考虑了王应睐的建议。
于是,“1960年7月,杜润生同志指示说,大兵团作战,搞长了不行,应精干队伍”。随后,“经过三天大会,总结辩论,生理、实生、药物三个所下马,留下生化、有机两个所”。剩下两所的参与人数也逐渐减少,到年底时,生化所只剩了“精干队伍近20人”,“有机所……只剩下7人”。
在交了上百万元的昂贵学费后,科学院的大兵团作战就这样偃旗息鼓。
1960年,北京大学化学系、生物系参加胰岛素工作的学生没有正常的暑假,直到10月份他们还在继续工作。终于又合成了三批人工合成A链,自己测试有活力,于是把它们送到生化所。但到那儿之后,它们又失活了!10月下旬,生化所决定派杜雨苍和张友尚过去“学习”。果然不出所料,北京大学所用的测试方法是不规范的!谁也不知道他们“合成”的究竟是什么,惟一可以肯定的是那不是胰岛素A链!60万元的巨额经费已经用尽,结果又如此不如人意,而且人员伤病还相当严重———其中,有3个学生被严重烧伤;有60多个学生得了肺结核———工作当然无法进行下去了。连总结都没做,北京大学化学系的大兵团作战就这样鸣金收兵。
复旦大学生物系的情况与北京大学的类似,也是因为经费等问题而于1960年下半年停止。
“大兵团作战”阶段所获得的产物,除有机所还留了一点用于继续提纯和分析,后来还陆续整理出了几篇论文外,其他单位七八百位科技工作者和学生轰轰烈烈、辛辛苦苦忙了好几个月,所收获的恐怕就是失败的教训了。
作为那个时代所独有的科研方式,“大兵团作战”本身是很值得关注的。轻视原本就非常少的专家,由领导干部直接指挥不懂行的群众用搞运动方式做研究,这是中国人在科研方式上的独特创造,也确实实践了当时一些领导所设想的“无产阶级的科学道路”。但遗憾的是,在胰岛素工作中,这条研究道路行不通。
脚踏实地终获成功
“大兵团夹击胰岛素”遇挫之后,国家也已进入调整时期。在“调整、充实、巩固、提高”八字方针的指导下,开始允许科研人员和教师做自己感兴趣的工作。于是,有机所的一些研究人员表示要再次“敲锣打鼓”把这个课题“送还生化所”,而生化所的绝大部分参与者也心灰意懒,希望下马这个课题。北京大学化学系的情况也类似。但聂荣臻、王仲良、张龙翔、汪猷等多级领导人坚决不同意这样做。在他们的要求和命令下,中科院和北京大学的胰岛素工作分别持续了下来,只是把队伍精干到了总共20多人——北大最少的时候只剩两个人,而中科院方面也只剩了一二十人,他们大部分都为早期的参与者——工作方式也恢复到了以前冷清、缓慢而脚踏实地的状态。
在国家科委的撮合下,1963年底,北京大学化学系和中科院有机所、生化所又开始重新合作———北京大学化学系主要负责合成胰岛素A链前9肽。又经过两年时间,到1965年9月17日,他们取得了人工胰岛素结晶,终于完成了胰岛素的人工合成。换句话说,在研究人员和研究方法都基本恢复到了先前走所谓“资产阶级的科学工作道路”时的状态后,他们成功了。
浅谈蛋白质折叠的有关问题
[关键字]生物 大分子 分子伴侣 蛋白质的折叠 识别 结合
生物大分子的结构与功能的研究是了解分子水平的先象的基础。没有对生物大分子的结构与功能的认识,就没有分子生物学。正如没有DNA双螺旋结构的发现,就没有遗传传达传递的中心法则,也就没有今天的分子生物学。结构分子以由第一分子进入对复和物乃至多亚基,多分子复和体结构研究。同时,过去难以研究的分子水平上的生命运动情况也随着研究的深入和技术手段的发展而逐渐由难点变为热点。蛋白质晶体学研究已从生物大分子静态(时间统计)的结构分析开始进入动态(时间分辨)的结构分析及动力学分析。第十三届国际生物物理大会的25个专题讨论会中有一半以上涉及蛋白质的结构与功能,而“结构与功能”又强调“动力学(Dynamics)”,即动态的结构或结构的运动与蛋白质分子功能的关系,以及对大分子相互作用的贡献。
蛋白质折叠问题被列为“21世纪的生物物理学”的重要课题,它是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。第十三届国际生物物理大会上,Nobel奖获得者Ernst在报告中强调指出,NMR用于研究蛋白质的一个主要优点在于它能极为详细的研究蛋白质分子的动力学,即动态的结构或结构的运动与蛋白质分子功能的关系。目前的NMR技术已经能够在秒到皮秒的时间域上观察蛋白质结构的运动过程,其中包括主链和侧链的运动,以及在各种不同的温度和压力下蛋白质的折叠和去折叠过程。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。例如,运输小分子的酶和蛋白质通常存在着两种构象,结合配体的和未结合配体的。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态,又如,为了了解蛋白质是如何折叠的,就必须知道折叠时几个基本过程的时间尺度和机制,包括二级结构(螺旋和折叠)的形成,卷曲,长程相互作用以及未折叠肽段的全面崩溃。多种技术用于研究次过程,如快速核磁共振,快速光谱技术(荧光,远紫外和近紫外圆二色)。
一、新生肽段折叠研究中的新观点
长期以来关于蛋白质折叠,形成了自组装(self-assembly)的主导学说,因此,在研究新生肽段的折叠时,就很自然的把在体外蛋白质折叠研究中得到的规律推广到体内,用变性蛋白的复性作为新生肽段折叠的模型,并认为细胞中新合成的多肽链,不需要别的分子的帮助,不需要额外能量的补充,就应该能够自发的折叠而形成它的功能状态。
1988年,邹承鲁明确指出,新生肽段的折叠在合成早期业已开始,而不是合成完后才开始进行,随着肽段的延伸同时折叠,又不断进行构象的调整,先形成的结构会作用于后合成的肽段的折叠,而后合成的结构又会影响前面已形成的结构的调整。因此,在肽段延伸过程中形成的结构往往不一定是最终功能蛋白中的结构。这样,三维结构的形成是一个同时进行着的,协调的动态过程。九十年代一类具有新的生物功能的蛋白,分子伴侣(Molecularchaperone)的发现,以及在更广泛意义上说的帮助蛋白质折叠的辅助蛋白(Accessoryprotein)的提出,说明细胞内新生肽段的折叠一般意义上说是需要帮助的,而不是自发进行的。
二、蛋白质分子的折叠和分子伴侣的作用
蛋白质分子的三维结构,除了共价的肽键和二硫键,还靠大量极其复杂的弱次级键共同作用。因此新生肽段在一边合成一边折叠过程中有可能暂时形成在最终成熟蛋白中不存在不该有的结构,他们常常是一些疏水表面,它们之间很可能发生本不应该有的错误的相互作用而形成的非功能的分子,甚至造成分子的聚集和沉淀。按照自组装学说,每一步折叠都是正确的,充分的,必要的。实际上折叠过程是一个正确途径和错误途径相互竞争的过程,为了提高蛋白质生物合成的效率的,应该有帮助正确途径的竞争机制,分子伴侣就是这样通过进化应运而生的。它们的功能是识别新生肽段折叠过程中暂时暴露的错误结构的,与之结合,生成复和物,从而防止这些表面之间过早的相互作用,阻止不正确的非功能的折叠途径,抑制不可逆聚合物产生,这样必然促进折叠向正确方向进行。(从哲学的观点说,似乎很容易驳斥自组装学说,它违背了矛盾的普遍性原理,试想,如果蛋白质的每一步折叠均是正确的,充分的,必要的,岂不是在无任何矛盾的前提下,完成了复杂的最稳定构象的形成,即完成了由量变到质变的伟大飞跃,从无活性的肽链变成有活性的功能蛋白,这显然是违背哲学基本原理的。换一个角度想,生物进化的过程本来就充满着不定向的变异,这些变异中有适应环境的,也有不适应环境的,“物竞天择”,自然的选择淘汰了那些不适应的,保留了那些适应的。蛋白质分子的折叠不也与此类似吗?我想,蛋白质的一级结构只是肽链折叠并形成功能蛋白的特定三维结构的内因,实际上,多肽链在形成活性蛋白的每一步,都有潜在的可能形成“不正确”的折叠,如果没有象分子伴侣或其它帮助蛋白等外部因素的作用,多肽链也永远不能折叠成为活性蛋百。)
三,分子伴侣的作用机制
分子伴侣的作用机制实际上就是它如何与靶蛋白识别,结合,又解离的机制。有的分子伴侣具高度专一性,如一些分子内分子伴侣,还有细菌Pseudomonascepacia的酯酶,有它自己的“私有分子伴侣”。它是由基因limA编码的,与酯酶的基因LipA只隔3个碱基,可能是进化过程中发生的基因分裂造成的。而一般的分子伴侣识别特异性不高,它是怎样识别需要它帮助的对象的呢?现在只能说分子伴侣识别非天然构象,而不去理会天然的构象。由于在天然分子中,疏水残基多半位于分子的内部而形成疏水核,去折叠后就可能暴露出来,或者在新生肽段的折叠过程中,会暂时形成在天然构象中本应该存在于分子内部的疏水表面,因此认为分子伴侣最有可能是与疏水表面相结合,如硫氰酸酶(Rhodanese)分子α-helix的疏水侧面。但是只有β-sheet结构的蛋白质才可为分子伴侣识别。
最近关于识别机制有较大的进展。Bip是内质网管腔内的分子伴侣,用一种affinitypanning的方法检查Bip与有随机序列的十二肽结合的特异性,结果发现,Hy-(W/X)-Hy-X-Hy-X-Hymotif与Bipj结合最强,Hy最多的是Trp、Leu、Phe,即较大的疏水残基。一般来说,2-4个疏水残基就足够进行结合。还有一种较普遍的说法是分子伴侣识别所谓熔球体结构(moltenglobule)。另一方面,分子伴侣本身与肽结合部位的结构分析最近也有些进展。譬如,PapD的晶体结构表明,多肽结合在它的β-sheet区。GroEL中,约40kD的153-531结构域是核苷酸的结合区。
分子伴侣作用的第二步是与靶蛋白形成复合物。非常盛行的一种模型认为分子伴侣常常以多聚`体形式而形成中心空洞的结构,用电子显微镜已经观察到由二圈层圆面包圈形组成的十四体GroEL分子和一个一层圆面包圈的七体GroES分子协同作用形成中空的非对称笼状结构(cagemodel),推测靶蛋白可以在与周围环境隔离的中间空腔内不受干扰的进一步折叠。但是不久前一个日本实验室发现GroEL的一个亚基,甚至其N端去除78个氨基酸残基的50kD片段,已经不能再组装成十四体结构,都有确定的分子伴侣功能。由此,我想:也许环状分子伴侣并非每个部位都是有效的结合部位,也就是说,该二层圆面包圈组成的十四体GroEL分子只有一个或若干个部位能够与疏水残基或所谓的熔球体结构结合,而其余部位起识别作用,就像一个探测器一样,整个十四体GroEL分子以圈层或笼状结构”包裹”在多肽链的主链上,以旋进方式再多肽链的链体上运动,一旦环状多聚体的某一识别部位发现疏水结构或所谓的熔球体结构等新生肽链折叠过程中暂时暴露的错误结构,经信号转导,多聚体的结合部位便与之结合,生成复合物,抑制不正确的折叠。以上完全是我个人的猜想,是基于上述两个试验现象的矛盾而试图作一番解释。至于为什么假设以旋进方式在多肽链上运动,我并没有相应的根据,只是觉得这应该是一个动态过程,因此作了一番狂妄的假想,另外,我觉得也许可以用X射线衍射来探测一下分子伴侣GroEL和GroES组成的笼状结构,看看它的a×b×c是否足以容纳多肽链的某一段,或者它的内部和外部的疏水性质和其他一些物化性质如何,也许可以找到支持或驳斥上述假设的证据。
以上谈的都是蛋白质的分子伴侣。不久前又出现了一个新名词“DNAchaperones”,DNA分子伴侣,这种分子伴侣是与DNA相结合并帮助DNA折叠的。在这种复合物中,DNA分子包围在蛋白质分子的表面,既是高度有序的,又是在一定程度上结构已有所改变的。DNA与蛋白的这种相互作用对DNA的转录,复制以及重组都十分重要;或如在核小体中,对DNA的包装是必须的。DNA在溶液中的结构有相当的刚性,必须克服一个能障才能转变成它的蛋白复合物中的结构,分子伴侣的作用就是帮助DNA分子进行折叠和扭曲,从而把DNA稳定在一个适合于和蛋白结构的特定构型中。这种结合是协同的,可逆的在形成复合物之后便解离下来。因此,不论是DNA分子伴侣还是蛋白分子伴侣,都与DNA和蛋白的相互作用有关,与基因调控有关,看来,分子伴侣确实与最终阐明中心法则当前主要问题有密切关系。
四、分子伴侣和酶的区别
与分子伴侣不同,以确定为帮助蛋白质折叠的酶目前只有两个,一个是蛋白质二硫键异构酶(proteindisulfideisomerase,PDI);另一个是肽基脯氨酸顺反异构酶(peptidylprolylcis-transisomerase,PPI)。以PDI为例,众所周知,蛋白质分子中的二硫键与新生肽段的折叠密切相关,对维系蛋白质分子的结构稳定性和功能发挥也有重要作用。PDI定位在内质网管腔内,含量丰富,催化蛋白质分子内巯基与二硫键之间的交换反应。同时,它是目前发现的最为突出的多功能蛋白,除了二硫键的异构酶的基本功能外,它还是脯氨酸-4-羟化酶的α亚基;又是微粒体内甘油三酯转移蛋白复合物的小亚基,还是一种糖基化位点结合蛋白(gkycisylationsitebindingprotein)等。其中,最引人注目的还是它有与多肽结合的能力,可以结合具有不同序列,长度和电荷分布的肽,特异性较低,主要是与肽的主链相作用,但对巯基尚有一些偏爱。按照分子伴侣的定义,一般认为PDI和分子伴侣是两类不同的帮助蛋白,但是我国上海生物物理研究所最近提出不同的看法,认为蛋白质二硫键异构酶也具有分子伴侣的功能。
蛋白质分子中天然二硫键的形成要求这些在肽链上往往处于不相邻位置的巯基,首先通过肽链一定程度的折叠,才能相互接近到可以正确形成二硫键的位置。肽链的自身折叠是一个慢过程,而蛋白质二硫键异构酶催化蛋白质天然二硫键的形成却是一个快过程。另一方面,蛋白质二硫键异构酶具有低特异性的与各种不同肽链相结合的能力,在内质网中以极高的浓度存在,又是是一个钙结合蛋白,是一个能被磷酸化的蛋白,这些都已经符合了分子伴侣的条件。因此他们推测蛋白质二硫键异构酶很可能首先通过它与伸展的,或部分折叠的肽段的结合,阻止错误的折叠途径,促进正确的中间物生成,帮助肽链折叠是相应的巯基配对,从而是正确的二硫键得以形成;然后催化巯基的氧化或二硫键的异构而形成天然二硫键。他们认为蛋白质二硫键异构酶的酶活性与它的分子伴侣功能不是相互排斥,而是密切相关,协调统一的。分子伴侣与帮助新生肽链折叠的酶之间,大概不应该,也不能够划一条绝对的分界线。我想:酶的最主要特性就是催化生化反应,分子伴侣的主要作用是与新生肽段的错误构象结合,从而阻止肽链不正确的非功能的折叠途径,促使其向正确的折叠方向反应,这难道不可以理解成间接的催化肽链的折叠吗?从表观上看,抑制不正确的折叠途径等于加快了正确反应的速度。所以,我本人也很赞成他们的观点。最近的试验已经为这一假说提供了很好的证据。PDI明显抑制变性的甘油醛-3-磷酸脱氢酶在复性股过程中的严重聚合,有效的提高它的复性效率,与典型的分子伴侣GroE系统对甘油醛3-磷酸脱氢酶复性的效应极其相似。
五、分子伴侣的结构
目前唯一解出晶体结构的分子伴侣是E.coli的PapD,帮助鞭毛蛋白折叠的分子伴侣。还有HSP70的N端结构域,即ATP结合域也以有晶体结构。用电子显微镜已经清楚的看到了GroEL的十四聚体和GroEL的七聚体的四级结构,象两个圆形中空的面包圈叠在一起,用NMR以及各种溶液构象变化是研究分子伴侣作用机制的有效手段。
六、分子伴侣研究的实际应用
分子伴侣的研究成果必然会大大加深我们对生命现象的认识,同时也一定会增加我们与自然斗争的能力和自身生存的能力。由于分子伴侣在生命活动的各个层次都具有重要作用,它的突变和损伤也必定会引起疾病,因此可以期望运用分子伴侣的知识来治疗所谓的”分子伴侣病”。另一方面,利用对分子伴侣的研究成果从根本上提高基因工程和蛋白工程的成功率,也必将对大幅度提高人类生活水平起重要作用。
[参考书目]
1.李宝健主编,面向21世纪生命科学发展前沿,广东科技出版社,1996年11月第一版:93-104页
2.郝柏林刘寄星主编,理论物理与生命科学,上海科学技术出版社,1997年12月第一版:29-58页
3.中国生物物理代表团,从第十三届国际生物物理大会看生物物理学研究的现状和趋势,生物物理学报,1999年第十五卷第四期:826-827页
本文地址:http://www.dadaojiayuan.com/zhongyizatan/78183.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
上一篇: 银杏叶制剂可提高肺源性心脏病疗效
下一篇: 莲必治注射液致急性肾功能损害