登录
首页 >> 中医基础常识 >> 杂谈

寡核苷配体研发突飞猛进

医案日记 2023-06-19 15:36:08

寡核苷配体研发突飞猛进

寡核苷具有专一识别性,能与包括离子、整个细胞、毒素、低分子量配体、多肽类与蛋白质等多种类的功能目标物结合。由于寡核苷顺序具有比其他已知“互补顺序”与目标物更强、更专一的结合力,这一特性使得寡核苷为基础的测定技术可用于各种新领域,如医疗、化学分离技术以及生物传感器等等。近年来,国外医药业界和临床医学界对寡核苷的应用前景产生了浓厚的兴趣,与之相关的各种研究也取得了突飞猛进的进展。

新药研发

在上世纪90年代中,美国科学家曾试图将寡核苷配体用于医疗。这种人工合成的核苷由于具有极高的蛋白质亲和力故能阻滞体内的受体,抑制蛋白质活动,它们成为当时不少医药研发机构筛选新药时的目标。

寡核苷配体具有分子量小、半衰期短、低生产成本、良好的生物相容性和与体内抗体无交叉反应性等优点,故具有广泛的医疗应用前景。但问题在于人的血液中存在有大量的“核苷酶”,如若直接将寡核苷配体加工成制剂,它进入人体后,很快就会因核苷酶的分解而失活。为避免这一结果,最好的办法是将寡核苷配体进行化学修饰,如将天然右旋型寡核苷加工成左旋型寡核苷。这样一来,人体内的核苷酶就无法识别并分解人工合成的寡核苷配体类制剂。

美国一公司在几年前已开发上市了一种寡核苷配体类新药Macugen。它能用于治疗老年人群常见的一种棘手眼病——视网膜黄斑退化症。这种眼病的发生与视网膜毛细血管的异常生长有关。而新开发的Macugen能抑制视网膜毛细血管的过度生长,因此能防止视网膜黄斑退化和视力下降。美国食品药品管理局(FDA)去年已正式批准Macigem作为老年性视网膜黄斑退化症的治疗剂。由Gilead公司开发的ARC183是另一种具有治疗作用的寡核苷配体类新药。它是一种抗凝血酶药物,临床上可用于治疗血栓病和预防血液凝固。此药现已顺利通过Ⅰ期临床试验。

据最新报道,美国一公司正在研制一种专门用于抑制乙肝病毒促使体内释放“肠促胰腺液”(一种多聚蛋白质)的新型寡核苷配体类药物。而由乙肝病毒引起的肠促胰腺液能导致病人发生危险的溶血症。

分离化学

由于寡核苷有很强的结合力和专一性,故它在分离化学方面亦有良好应用前景,如从复杂的混合物中提取分离出目标物质等等。虽然抗体也有极强亲和力,可用作静止相的受体分子,但抗体在色层法中的应用受到一定限制。寡核苷配体由于能克服抗体的上述缺陷,所以可用于“亲和色谱法”中。例如,腺苷及其衍生物利用以静止相为载体的寡核苷配体可加以纯化。同样原理,以静止相为载体的寡核苷配体还可用于分离出手性氨基酸或多环芳香烃类化合物。这类例子不胜枚举。

新型生物传感器

寡核苷配体另一用途是作为“生物识别元件”,用于生物传感器用途。所谓“生物传感器”,系指能选择性地测定一种“被分析物”并借助物理传导方法产生一种生物类产品的可测出的相应信号。生物传感器的分析目标并非只限于生物制品一种。实际上任何化学“被分析物”均可用生物传感器进行测定。“寡核苷配体传感器”就是一种使用寡核苷配体作为生物识别元件的新颖传感器。上世纪90年代末,首个寡核苷配体生物传感器才刚刚问世。

过去10年来,西方学者发表了众多的有关寡核苷配体生物传感器的研究文献。这些寡核苷配体生物传感器通常使用荧光标记。例如,测定L-腺苷可用“消散波引导荧光技术”;测定凝血酶可用“寡核苷配体-荧光骤冷对”。目前寡核苷配体已被成功用于多种检测技术中。如“石英晶体微平衡”(QCM)与“表面等离子振子共振”(SPR)是两种被广泛应用的传导和测定非标记寡核苷配体的技术。测定一种无标记蛋白质的方法是利用“微织悬臂传感器”,其作用是:作为TaqDNA多聚酶的受体与寡核苷配体反应。至于寡核苷配体与免疫球蛋白E(IgE)之应可通过原子力显微镜法加以测定。此外,测定凝血酶与艾滋病毒(HIV)逆多肽可使用表面声波生物传感器排列偶合寡核苷配体。

最近,美国又开发出两种寡核苷配体传感器。例如,一种由两种寡核苷配体组成的“三明治构型”可作为新型生物传感器并用“阻抗光谱法”来测定寡核苷与IgE的敏感反应。由于寡核苷分子能产生可测定的对应于被分析物信号变化,故寡核苷配体可作为电化学法的“信号灯”。这方面的新成功应用实例是,一种用“二茂铁”标记的寡核苷配体信号灯生物传感器可用于测定凝血酶,而另一种以电化学寡核苷配体为主要成分的“信号灯”可用于检测血样(或其他物体)中的可卡因成分。

新型寡核苷配体的开发成功为人们提供了更为有效的鉴别方法与生产技术(如SELEX等等)、便捷的化学合成法(如在分析支持下的直接自动合成)、高密度固相化、测定一切毒物以及在非生理条件下的稳定性等等。然而,寡核苷配体图集首先应与抗体相匹配。其次,在采用寡核苷配体作为原材料之前必须先行确定开发最优化和确定障碍的分析方法。

【相关链接】

寡核苷配体(Aptamer)系一种小分子人工合成寡核苷类化合物(oligonucleotides),通常由40~100个氨基酸分子所组成。

寡核苷配体是美国3个不同的科研小组在1990年研究脱氧核糖核酸的酶活力时偶然发现。他们在试管中分离具有酶功能的核糖核酸时,偶然发现了一种无规则分布的8个核苷酸顺序。他们发明的“指数富集法配体进化系统(SELEX)”为一种新颖寡核苷配体生产技术,该项生产技术已获得美国专利。利用SELEX方法能顺利鉴定大多数可作为酶使用的选择性寡核苷配体。

此后不久,美国马萨诸塞州总医院的研究人员宣布说,他们发现了100种无规则分布的寡核苷,它们与业已确认的寡核苷完全不同。新发现的寡核苷之中有不少有可能成为新的“寡核苷配体”。上述新发现震动了全球化学界。

凝胶的生物

生物分子下游纯化的对象一般包括蛋白、酶、重组蛋白、单抗、抗体及抗原、肽类、病毒、核酸等。纯化前首先需要测定生物分子的各物理和化学特性,然后通过实验选择出最有效的纯化流程。
1.测定——分子量、PI
当目标蛋白的物理特性如分子量、PI等都不清楚时,可用PAGE电泳方法或层析方法加以测定。分离范围广阔的Superose HR预装柱很适合测定未知蛋白的分子量。用少量离子交换介质在多个含不同PH缓冲液的试管中,可简易地测出PI,并选择纯化用缓冲液的最佳PH。
2.选择——层析方法
若对目标蛋白的特性或样品成分不太了解,可尝试几种不同的纯化方法:
一 使用最通用的凝胶过滤方法,选择分离范围广阔的介质如Superose、Sephacryl HR依据分子量将样品分成不同组份。
二 用含专一配体或抗体的亲和层析介质结合目标蛋白。亦可用各种活化偶联介质偶联目标蛋白的底物、受体等自制亲和介质,再用以结合目标蛋白。一步即可得到高纯度样品。
三 体积大的样品,往往使用离子交换层析加以浓缩及粗纯化。高盐洗脱的样品,可再用疏水层析纯化。疏水层析利用高盐吸附、低盐洗脱的原理,洗脱样品又可直接上离子交换等吸附性层析。两种方法常被交替使用于纯化流程中。
3.纯化——大量粗品
处理大量原液时,为避免堵塞柱子,一般使用sepharose big beads、sepharoseXL、sepharose fast flow等大颗粒离子交换介质。扩张柱床吸附技术利用多种STREAMLINE介质,直接从含破碎细胞或组织萃取物的发酵液中俘获蛋白。将离心、超滤、初纯化结合为一。提高回收率,缩短纯化周期。
4.纯化——硫酸氨样品
硫酸氨沉淀方法常被用来初步净化样品,经处理过的样本处于高盐状态下,很适合直接上疏水层析。若作离子交换,需先用Sephadex G-25脱盐。疏水层析是较新技术,随着介质种类不断增多,渐被融入各生产工艺中。利用Hitrap HIC Test Kit 和RESOURCE HIC Test Kit可在八种疏水介质中选择最适合介质及最佳的纯化条件。低盐洗脱的样品可稍加稀释或直接上其它吸附性层析。
5.纯化——糖类分子
固化外源凝订素如刀豆球蛋白、花生、大麦等凝集素,可结合碳水化合物的糖类残基,很适合用作分离糖化细胞膜组份、细胞、甚至亚细胞细胞器,纯化糖蛋白等。两种附上外源凝集素的Sepharose 6MB亲和层析介质,专为俘获整个细胞或大复合物,如膜囊等。
6.纯化——膜蛋白
膜蛋白分离常使用去污剂以保持其活性。离子性去污剂应选用与目标蛋白相反电荷者,避免在作离子交换时和目标蛋白竞争交换介质,藉此除去去污剂。非离子性去污剂可以疏水层析除去。
7.纯化——单抗、抗原
单抗多为IgG.来源主要是腹水和融合瘤培养上清液。在培养前除去IgG.重组蛋白A介质Mabselect和rProtein A Sepharose FF对IgG有更高的载量和专一性,基团脱落更少。脱落的rProtein A用离子交换Q Sepharose HP或凝胶过滤Superdex 200,很容易去除。
疏水层析Phenyl Sepharose HP亦很适合纯化IgG.宿主抗体和污染IgG可用凝胶过滤Superdex 200在精细纯化中去除。
纯化IgG抗原最有效的方法是用活化偶联介质如CNBr、NHs activated Sepharose FF偶联IgG,再进一步获取IgG抗原。
HiTrap IgM是用来纯化融合瘤细胞培养的单抗IgM,结合量达5mg IgM.HiTrap IgY是专门用来纯化IgY,结合量达100mg纯IgY.
8.纯化——重组蛋白
重组蛋白在设计、构建时应已融入纯化构想。样品多夹杂了破碎细胞或溶解产物,扩张柱床吸附技术STREAMLINE便很适合做粗分离。Amersham biosciences提供三个快速表达、一步纯化的融合系统。
一 GST融合载体使要表达的蛋白和谷胱甘肽S转移酶一起表达,然后利用Glutathione Sepharose 4B作亲和层析纯化,再利用凝血酶或因子Xa切开。
2. 蛋白A融合载体使要表达的蛋白和蛋白A的IgG结合部位融合在一起表达,以IgG Sepharose 6 FF纯化。
二 含组氨酸标记(Histidine-tagged)的融合蛋白可用Chelating Sepharose FF螯合Ni2+金属,在一般或变性条件(8M尿素)下透过组氨酸螯合融合蛋白。HisTrap试剂盒提供整套His-Tag蛋白的纯化方法。
9.纯化——包涵体蛋白
包涵体蛋白往往需溶于6M盐酸胍或8M尿素中。一般包涵体蛋白样品的纯度越高,复性效果越好。SOURCE 30 RPC反相层析介质很适合纯化复性前的粗品,并可以1MnaOH重生。此方法纯化后的包涵体蛋白,复性回收率明显提高。
10.包涵体蛋白固相复性
许多文献报导将包涵体蛋白在变性条件下固定(吸附)在层析介质上,一般用各种Sepharose FF离子交换层析介质。而且无需大量稀释样品,并将复性和初纯化合二为一,大大节省时间及提高回收率。
固相复性方法也被用于以HiTrap Chelating金属螯合层析直接复性及纯化包涵体形式表达的组氨酸融合蛋白;以HiTrap Heparin肝素亲和层析直接复性及纯化包涵体形式表达的含多个赖氨酸的融合蛋白。两种亲和层析预装柱均可反复多次重复使用,比一般试剂盒更方便、耐用。
11.纯化——中草药有效成分
中药的化学成分极其复杂。例:如用甲醇分离黄酮甙,三糖甙先被洗下来,二糖甙其次,单糖甙随后,最后是甙元。Sephadex LH-20可使用水、醇、丙酮、氯仿等各种试剂,广泛用于各种天然产物的分离,包括生物碱、甙、黄酮、醌类、内脂、萜类、甾类等。
生物碱在酸性缓冲液中带正电,成为盐,HiTrap SP阳离子交换层析柱可以分离许多结构非常近似的生物碱。相反,黄酮、蒽醌、皂甙、有机酸等可溶于偏碱的缓冲液中,在HiTrap Q阴离子交换柱上分离效果良好。
一般多糖纯化大多使用分子筛如Sephadex,Sephacryl.若分子量在600KD以下,并需更高分辨率,可选择新一代的Superdex.一般植物可能含水溶性、酸溶性、碱溶性多种多糖。SOURCE5、15、30RPC反相层析也很适合各种中药有效成分的检测、分离和放大制备。由于中药的成分非常复杂,SOURCE反相层析可用范围为PH1-14 ,并可用1M NaOH,1M HCL清洗、再生。比传统硅胶反相层析更易于工艺优化及在位清洗,寿命也更长。
12.纯化——肽类
肽类的来源有天然萃取,合成肽和重组肽三种。肽容易被酶降解,但可从有机溶剂或促溶剂中复性,所以多以高选择性的反相层析如SOURCE 30RPC、SOURCE 15RPC、SOURCE 5RPC或离子交换Minibeads、Monobeads作纯化。Superdex Peptide HR是专为肽分子纯化设计的凝胶过滤预装柱,能配合反相层析做出更精美的肽图。肽分子制备可用离子交换配合凝胶过滤Superdex 30 PG。医学都市多功能
13.纯化——核酸、病毒
核酸的纯化用于去除影响测序或PCR污染物等研究。核酸可大致上分为质粒DNA、噬菌体DNA和PCR产物等。病毒也可视作核酸大分子,和质粒DNA一样,可用分离大分子的Sephacry S-1000 SF、Superose或Sepharoce 4FF凝胶过滤介质去除杂蛋白,再配合离子交换如Mono Q、 SOURCE Q分离核酸。
14.纯化——寡核苷酸寡酸苷酸
多应用在反义(anti-sense)DNA、RNA测序、PCR和cDNA合成等研究。合成后含三苯甲基的寡核苷酸以阴离子交换的Mono Q或快速低反压的SOURCE Q在PH12下可除副产物,并避免凝集和保护基的脱落。载量大大高过反相层析,可用做大量制备。不含三苯甲基的失败序列可用反相柱ProRPC去除。
15.脱盐、小分子去除
使用凝胶过滤介质Sephadex G10,G15,G25,G50等去除小分子,效率高,处理量可达床体积30%.只需在进样后收集首1/3-1/2柱体积的洗脱液,HiPrep Desalting(26ml)可在数分钟为多至10ml样品脱盐。
16.疫苗纯化
使用凝胶过滤介质Sepharose 4FF纯化疫苗,去除培养基中的杂蛋白,处理量可大于床体积10%.柱高一般40-70cm,整个过程约半至一小时。使用此法生产的疫苗品种有乙肝、狂犬、出血热、流感、肺结核、小儿麻痹疫苗等。分子量较小的疫苗可使用Sephacryl S-500HR,如甲肝疫苗等。
17.抗生素聚合物分析
中国药典从2000年版起要求抗生素头孢曲松钠需要找出聚合物占产品的白分比,规定使用Sephadex G10凝胶过滤法测定。
18.纯化-基因治疗用病毒载体
SORRCE 15Q
19.纯化-基因治疗用质粒
Q Sepharose XL,SOURCE 15Q,STREAMLINE Q,Sephacryl S500,Plasmidselect 在下游纯化中,可应用不同层析技术在纯化生物分子的同时,去除各种污染物。 1.去除——内毒素
内毒素又称热原。含脂肪A、糖类和蛋白,是带负电的复合大分子。
内毒素的脂肪A部份有很强的疏水性。但在高盐下会凝集,无法上疏水层析。利用疏水层析试验盒(17-1349-01)可选择结合目标蛋白的介质而去除内毒素。
内毒素与阴离子交换介质Q或DEAE Sepharose Fast Flow有较强结合。可在洗脱目标蛋白后用高盐缓冲液或NaOH去除。
利用CNBr或NHS Sepharose FF可偶联内毒素底物如LAL,PMB,自动成亲合层析介质结合内毒素。内毒素经常是多聚体,凝胶过滤层析可有效地将之去除。
2.去除——蛋白中的核酸
大量核酸增加样本黏度,令区带扩张,反压增加,降低分辨率和流速。药审和食检对核酸含量也有严格限制。
胞内表达蛋白的核酸问题尤其严重。核酸带阴电荷,在初步纯化时利用阳离子交换介质如STREAMLINESP,SP Sepharose Big Beads,SP或CM Sepharose FF,SP SepharoseXL结合目标蛋白,可除去大量核酸。
核酸在高盐下会和蛋白解离,疏水层析介质很适合用来结合目标蛋白,在纯化蛋白的同时去除核酸。
利用核酸酶将核酸切成小片断,用凝胶过滤做精细纯化时便很容易去除了。
3.去除——病毒和微生物
病毒和微生物可成为病原,应尽量减除。结合不同层析技术,使用注射用水,用NaOH定期进行仪器和凝胶的在位消毒和在位清洗,皆可避免污染物增加。
病毒大都有脂外壳。可用与目标蛋白电荷相反的S/D(solvent/detergent)处理,使病毒失活,如Triton和Tween.再用适当的离子交换介质如CM Sepharose FF结合目标蛋白,去除S/D.
其它污染物可以改变pH和离子强度使其从目标分子中解离或失活,凝胶过滤介质Superdex及多种吸附性介质,SOURCE都是很好的精细纯化介质,可去除多种微量污染物。 凝胶是指颗粒大小在1埃到10埃之间的混合物。高分子溶液和某些溶胶,在适当的条件下,整个体系会转变成一种弹性的半固体状态的稠厚物质,失去流动性。这种现象称为胶凝作用,所形成的产物叫做凝胶或冻胶.
“气凝胶”是指分散系为气态的,如:云,雾等,“固凝胶”有烟水晶等,“液凝胶”就是呈液态的胶体,如氢氧化铁胶体 。

基因诊断的基本原理

基因诊断又称DNA诊断或分子诊断,通过分子生物学和分子遗传学的技术,直接检测出分子结构水平和表达水平是否异常,从而对疾病做出判断。
 核酸分子杂交是基因诊断的最基本的方法之一。 基因诊断技术它的基本原理是:互补的DNA单链能够在一定条件下结合成双链,即能够进行杂交。这种结合是特异的,即严格按照碱基互补的原则进行,它不仅能在DNA和DNA之间进行,也能在DNA和RNA之间进行。因此,当用一段已知基因的核酸序列作出探针,与变性后的单链基因组DNA接触时,如果两者的碱基完全配对,它们即互补地结合成双链,从而表明被测基因组DNA中含有已知的基因序列。由此可见,进行基因检测有两个必要条件,一是必需的特异的DNA探针;二是必需的基因组DNA。当两者都变性呈单链状态时,就能进行分子杂交。 一、基因探针基因探针(probe)就是一段与目的基因或DNA互补的特异核苷酸序列,它可以包括整个基因,也可以仅仅是/基因的一部分;可以是DNA本身,也可以是由之转录而来的RNA。 1.探针的来源 DNA探针根据其来源有3种:一种来自基因组中有关的基因本身,称为基因组探针(genomic probe);另一种是从相应的基因转录获得了mRNA,再通过逆转录得到的探针,称为cDNa 探针(cDNa probe)。与基因组探针不同的是,cDNA探针不含有内含子序列。此外,还可在体外人工合成碱基数不多的与基因序列互补的DNA片段,称为寡核苷酸探针。基因诊断
2.探针的制备 进行分子突变需要大量的探针拷贝,后者一般是通过分子克隆(molecular cloning)获得的。克隆是指用无性繁殖方法获得同一个体、细胞或分子的大量复制品。当制备基因组DNA探针进,应先制备基因组文库,即把基因组DNA打断,或用限制性酶作不完全水解,得到许多大小不等的随机片段,将这些片段体外重组到运载体(噬菌体、质粒等)中去,再将后者转染适当的宿主细胞如大肠肝菌,这时在固体培养基上可以得到许多携带有不同DNA片段的克隆噬菌斑,通过原位杂交,从中可筛出含有目的基因片段的克隆,然后通过细胞扩增,制备出大量的探针。 为了制备cDNA 探针,首先需分离纯化相应mRNA,这从含有大量mRNA的组织、细胞中比较容易做到,如从造血细胞中制备α或β珠蛋白mRNA。有了mRNA作模板后,在逆转录酶的作用下,就可以合成与之互补的DNA(即cDNA),cDNA与待测基因的编码区有完全相同的碱基顺序,但内含子已在加工过程中切除。 寡核苷酸探针是人工合成的,与已知基因DNA互补的,长度可从十几到几十个核苷酸的片段。如仅知蛋白质的氨基酸顺序量,也可以按氨基酸的密码推导出核苷酸序列,并用化学方法合成。 3.探针的标记 为了确定探针是否与相应的基因组DNA杂交,有必要对探针加以标记,以便在结合部位获得可识别的信号,通常采用放射性同位素32P标记探针的某种核苷酸α磷酸基。但近年来已发展了一些用非同位素如生物素、地高辛配体等作为标记物的方法。但都不及同位素敏感。非同位素标记的优点是保存时间较长,而且避免了同位素的污染。最常用的探针标记法是缺口平移法(nicktranslation)。 探针的标记也可以采用随机引物法,即向变性的探针溶液加入6个核苷酸的随机DNA小片段,作为引物,当后者与单链DNA互补结合后,按碱基互补原则不断在其3’OH端添加同位素标记的单核苷酸,这样也可以获得比放射性很高的DNA探针。 二、限制性核酸内切酶(restrictionendonuclease),又简称限制酶或内切酶。它们是基因工程和基因诊断重要的一类工具酶。它们的发现和应用为从基因组中分离目的基因提供了必要的手段.限制酶能特异地识别和切割特异的核苷酸序列,将双链DNA切成较小的片段。酶切后目的基因可能完整地或部分地保存于某一DNA片段上,并被分离出来。 限制酶主要来源于原核生物,是一组能水解DNA磷酸二酯键的酶。迄今已发现的限制酶多达数百种,分为三类。在基因工程中使用的主要是第二类。限制酶根据其来源命名。 每种限制酶识别和切割的通常为4-6个核苷酸序列,称为限制性位点(restriction sites)或切点。限制酶切割双链DNA的方式有两种,产生的末端也有两种:第一种是交错切割,即两条链的切点不在同一水平而是相隔数个碱基,故断口产生两小段自身互补的单链,这种末端容易互补连接,称为粘性末端(cohesive terminus);第二种为平整切割。 限制酶的上述特性在基因工程和基因诊断中具有重要用途:①首先不论DNA的来源如何,用同一种内切酶切割后产生的粘性末端很容易重新连接,因此很容易将人和细菌或人和质粒任何两个DNA片段连接在一起,即重新组合,这是重组DNA技术的基础。②人类的基因组很大,不切割无法分析其中的基因。限制酶能把基因组在特异的部位切开,即切割不是随机的,因而从每个细胞的基因组得到的是相同的一组长度各异的片段。这些可能含有某一基因的片段可用电泳分离,并加以研究。③由于限制酶的特异性,如果识别位点的碱基发生了改变,限制酶将不再能切割;同样,碱基的改变也可能导致出现新的酸切位点。在人类基因组中,这两种情况是十分常见的,而切点的消失或出现将影响获得的DNA片段的长度,表现为限制性片段长度多态性(RFLP),这在基因的连锁诊断中具有极重要的意义。 三、限制性片段长度多态性一个人的两套单倍体DNA是不完全相同的,一般每100-500个碱基对就有一个是不相同的。换言之,如果把两套基因组DNA(各3.2×109bp)排列起来,那么平均有1000万处不同,它们多位于内含子序列中。实际上,除单卵双生子外,人群中没有两个个体的基因组DNA是完全相同的。 DNA的多态性虽可通过DNA测序检出,但用限制酶消化却是最常用的检测方法。 1.RFLP由于碱基的变异可能导致酶切点的消失或新的切点出现,从而引起不同个体在用同一限制酶切时,DNA片段长度出现差异,这种由于内切酶切点变化所导致的DNA片段长度的差异,称为限制性片段长度多态性(restriction fragmentlength polymporphism, RFLP)。RFLP反映了常见的个体间DNA核苷酸的可遗传性变异,它按照孟德尔方式遗传。RFLP可用Southern印迹杂交法检出。用Southern杂交检出RFLP时,如探针跨越切点,则被切开的两个片段均可与探针杂交,从而显示两条杂交带。 2.两点RFLP (1)点多态(point polymorphism):是由于单个或少数碱基的改变引起酶切点的出现或消失所致的RFLP。上述的RFLP即属于这一类。它们属经典的RFLP。在人类基因组中已发现数以百计的此类多态位点。 (2)数目变异的串连重复(variable number tandem repeats,VNTR):上述经典的单个碱基取代所致的RFLP一般只能检测到一种杂合性的两种形式,即“有”或“无”某个限制酶切位点,而且每个位点在人群中的杂合子频率通常不会超过50%,当被测个体为纯合状态时,利用RFLP就无法得到所需要的多态信息。此外,在整个基因组中,这类RFLP目前发现的数量还有限,并分布不匀。 但是,在人类基因组中还存在一类DNA重复序列,称为小卫星DNA。它们分布十分广泛,每一个单位通常只有16-28bp长,但其重复次数在人群中是高度变异的。当用限制酶切割VNTR区时,只要酶切点不在重复区内,就可能得到各种长度不同的片段与小卫星DNA不同,另一类重复序列是卫星DNA。它们的基本序列有1-6bp,如(TA)n、(CGG)n等,通常重复10-60次并呈高度的多态性。 VNTR具有高度的变异性,同时也是按照孟德尔方式遗传的,因此是很好的遗传标记,由于它们类型众多和在基因组中分布广泛,因而在基因连锁诊断中应用日益广泛。

本文地址:http://www.dadaojiayuan.com/zhongyizatan/77190.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章