英国皇家学会和皇家工程科学院联合进行了一项明确纳米技术发展应用现状和前景的调查研究,随后发表了一篇调查报告,名为“纳米科学和纳米技术机会和不确定性”。报告中提出,政府相关部门应该对纳米技术产品进行安全性测定和规范化管理。报告中指出,由于汽车尾气排放和能源津津有味,自然生成的纳米微粒已在空气中存在很久。目前还不清楚人造纳米微粒及其它纳米材料被人体吸入、被皮肤吸收或在环境中积蓄可能对人体健康和环境带来怎样的危害。一些研究发现,某些人造纳米微粒毒性要大于共同类物质的较大颗粒。
科学家们的意见是,欧盟和英国政府应当将纳米微粒和纳米管列为新型化学物质,并对其进行安全性测试和特别标示的管理。科学家们还建议,应成立特别的科学安全委员会,对涉及到普通百姓的纳米技术产品进行测试,证明对人体无害后方可应用并进入市场推广。例如化妆品行业防晒霜中采用的二氧化钛纳米微粒,必须经过安全检验之后才准许使用。报告还建议,纳米技术相关产业应该出台统一的安全检验细则。
纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。
而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的一些新的效应,也使其成为了研究热点,按照其中支撑体的种类可将它划分为无机介孔复合体和高分子介孔复合体两大类,按支撑体的状态又可将它划分为有序介孔复合体和无序介孔复合体。
在薄膜嵌镶体系中,对纳米颗粒膜的主要研究是基于体系的电学特性和磁学特性而展开的。美国科学家利用自组装技术将几百只单壁纳米碳管组成晶体索“Ropes”,这种索具有金属特性,室温下电阻率小于0.0001Ω/m;将纳米三碘化铅组装到尼龙-11上,在X射线照射下具有光电导性能, 利用这种性能为发展数字射线照相奠定了基础。
扩展资料:
纳米新材料
纳米新材料配方是一门在100 纳米以内空间内,通过自然更改直接排序原子与分子创造出来的新纳米材料的项目。纳米新材料与该领域是现代力量和现代技术创新的起点,新的规律和原理的发现与全新的理念创设给予基础科学,提供了新的机会,这会成为许多领域的重要改革新动力。纳米新材料配方由于SAIZU细小,拥有很多奇特的性能。
1988年Baibich 等第一次在纳米Fe/ Cr MS里发现磁电阻变化率达到百分之五十,与一般的ME比起来要大一个级别,并且是负值的,各向一样,称作GMR 。之后还在纳米体系的、隧道结和Perovskite结构、颗粒膜中发现巨ME。里面Perovskite结构在一九九三年是发现且具有极大ME,叫做CMR ,在隧道结中找到的为TMR。
-纳米材料
单位换算
1,000,000,000纳米 = 1 米(m) 1,000,000纳米 = 1 毫米(mm) 1,000纳米 = 1 微米(?m) 有时候也会见到埃米这个单位,为10^-10m。 1纳米 = 10 埃米(记为?)
编辑本段概况
硅单晶原子纳米扫描隧道显微镜影象.
单个细菌用肉眼是根本看不到的,用显微镜测直径大约是五微米。举个例子来说,假设一根头发的直径是0.05毫米,把它径向平均剖成5万根,每根的厚度大约就是一纳米。也就是说,一纳米大约就是0.000001毫米.纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米技术的发展带动了与纳米相关的很多新兴学科。有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。我国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。十多年来,我国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 对于固体粉末或纤维,当其有一维尺寸小于100nm,即达到纳米尺寸,即可称为所谓纳米材料,对于理想球状颗粒,当比表面积大于60m2/g时,其直径将小于100nm,达到纳米尺寸。
编辑本段纳米技术的含义
所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。纳米.
纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 纳米科技是90年代初迅速发展起来的新兴科技,其最终目标是人类按照自己的意识直接操纵单个原子、分子,制造出具有特定功能的产品。纳米科技以空前的分辨率为我们揭示了一个可见的原子、分子世界。这表明,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高了前所未有的高度。有资料显示,2010年,纳米技术将成为仅次于芯片制造的第二大产业。
编辑本段纳米技术的三种概念
第一种
从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。
第二种
第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
第三种
第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。
综合
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。 纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。 虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究。
编辑本段纳米电子器件的特点
电子器件
以纳米技术制造的电子器件,其性能大大优于传统的电子器件: . 工作速度快,纳米电子器件的工作速度是硅器件的1000倍,因而可使产品性能大幅度提高。功耗低,纳米电子器件的功耗仅为硅器件的1/1000。信息存储量大,在一张不足巴掌大的5英寸光盘上,至少可以存储30个北京图书馆的全部藏书。体积小、重量轻,可使各类电子产品体积和重量大为减小。纳米材料“脾气怪” 纳米金属颗粒易燃易爆 几个纳米技术.
纳米的金属铜颗粒或金属铝颗粒,一遇到空气就会产生激烈的燃烧,发生爆炸。因此,纳米金属颗粒的粉体可用来做成烈性炸药,做成火箭的固体燃料可产生更大的推力。用纳米金属颗粒粉体做催化剂,可以加快化学反应速率,大大提高化工合成的产出率。
金属块
纳米金属块体耐压耐拉 将金属纳米颗粒粉体制成块状金属材料强度比一般金属高十几倍,又可拉伸几十倍。用来制造飞机、汽车、轮船,重量可减小到原来的十分之一。
纳米陶瓷
纳米陶瓷刚柔并济 用纳米陶瓷颗粒粉末制成的纳米陶瓷具有塑性,为陶瓷业带来了一场革命。将纳米陶瓷应用到发动机上,汽车会跑得更快,飞机会飞得更高。
纳米氧化物
纳米氧化物材料五颜六色 纳米氧化物颗粒在光的照射下或在电场作用下能迅速改变颜色。用它做士兵防护激光枪的眼镜很好,将纳米氧化物材料做成广告板,在电、光的作用下,会变得更加绚丽多彩。制备磁性纳米晶体材料新方法.
纳米半导体材料法力无边纳米半导体材料可以发出各种颜色的光,可以做成小型的激光光源,还可将吸收的太阳光中的光能变成电能。用它制成的太阳能汽车、太阳能住宅有巨大的环保价值。用纳米半导体做成的各种传感器,可以灵敏地检测温度、湿度和大气成分的变化,在监控汽车尾气和保护大气环境上将得到广泛应用。
纳米药物
纳米药物治病救人,把药物与磁性纳米颗粒相结合,服用后,这些纳米药物颗粒可以自由地在血管和人体组织内运动。再在人体外部施加磁场加以导引,使药物集中到患病的组织中,药物治疗的效果会大大提高。还可利用纳米药物颗粒定向阻断毛细血管,“饿”死癌细胞。纳米颗粒还可用于人体的细胞分离,也可以用来携带DNA治疗基因缺陷症。目前已经用磁性纳米颗粒成功地分离了动物的癌细胞和正常细胞,在治疗人的骨髓疾病的临床实验上获得成功,前途不可限量。
纳米卫星
纳米卫星将飞向天空 在纳米尺寸的世界中按照人们的意愿,自由地剪裁、构筑材料,这一技术被称为纳米加工技术。纳米加工技术可以使不同材质的材料集成在一起,它既具有芯片的功能,又可探测到电磁波(包括可见光、红外线和紫外线等)信号,同时还能完成电脑的指令,这就是纳米集成器件。将这种集成器件应用在卫星上,可以使卫星的重量、体积大大减小,发射更容易,成本也更便宜。纳米技术走入百姓生活
编辑本段中国在纳米领域的成果
9月27日,中国科学院化学所的专家宣布研制成功新型纳米材料———超双疏性界面材料。这种材料具有超疏水性及超疏油性,制成纺织品,不用洗涤,不染油污;用于建筑物表面,防雾、防霜,更免去了人工清洗。专家称:纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”。 随着科学家的一次次努力,“纳米”这个几年前对我们还十分生疏的字眼,眼下却频频出现在我们的视线。 纳米是一个长度单位,1纳米等于十亿分之一米,20纳米相当于1根头发丝的三千分之一。90年代起,各国科学家纷纷投入一场“纳米战”:在0.10至100纳米尺度的空间内,研究电子、原子和分子运动规律和特性。 中国当然不甘人后,1993年,中国科学院北京真空物理实验室操纵原子成功写出“中国”二字,标志着我国开始在国际纳米科技领域占有一席之地,并居于国际科技前沿。 1998年,清华大学范守善小组在国际上首次把氮化镓制成一维纳米晶体。同年,我国科学家成功制备出金刚石纳米粉,被国际刊物誉为:“稻草变黄金———从四氯化碳制成金刚石。” 1999年,北京大学教授薛增泉领导的研究组在世界上首次将单壁碳纳米管组装竖立在金属表面,并组装出世界上最细且性能良好的扫描隧道显微镜用探针。 中科院成会明博士领导的研究组合成出高质量的碳纳米材料,被认定为迄今为止“储氢纳米碳管研究”领域最令人信服的结果。 中科院物理所研究员解思深领导的研究组研制出世界上最细的碳纳米管———直径0.5纳米,已十分接近碳纳米管的理论极限值0.4纳米。这个研究小组,还成功地合成出世界上最长的碳纳米管,创造了“3毫米的世界之最”。 在主题为“纳米”的争夺战中,中国人频频露脸,尤其在碳纳米管合成以及高密度信息存储等领域,中国实力不容小觑。防辐射孕妇装。
科学界的努力,使“纳米”不再是冷冰冰的科学词,它走出实验室,渗透到百姓的衣食住行中,居室环境日益讲究环保。传统的涂料耐洗刷性差,时间不长,墙壁就会变得斑驳陆离。现在有了加入纳米技术的新型油漆,不但耐洗刷性提高了十多倍,而且有机挥发物极低,无毒无害无异味,有效解决了建筑物密封性增强所带来的有害气体不能尽快排出的问题。 人体长期受电磁波、紫外线照射,会导致各种发病率增多或影响正常生育。现在,加入纳米技术的高效防辐射服装———高科技电脑工作装和孕妇装问世了。科技人员将纳米大小的抗辐射物质掺入到纤维中,制成了可阻隔95%以上紫外线或电磁波辐射的“纳米服装”,而且不挥发、不溶水,持久保持防辐射能力。不沾水的纳米伞。
同样,化纤布料制成的衣服因摩擦容易产生静电,在生产时加入少量的金属纳米微粒,就可以摆脱烦人的静电现象。 白色污染也遭遇到“纳米”的有力挑战。科学家将可降解的淀粉和不可降解的塑料通过特殊研制的设备粉碎至“纳米级”后,进行物理结合。用这种新型原料,可生产出100%降解的农用地膜、一次性餐具、各种包装袋等类似产品。农用地膜经4至5年的大田实验表明:70到90天内,淀粉完全降解为水和二氧化碳,塑料则变成对土壤和空气无害的细小颗粒,并在17个月内同样完全降解为水和二氧化碳。专家评价说,这是彻底解决白色污染的实质性突破。 从电视广播、书刊报章、互联网络,我们一点点认识了“纳米”,“纳米”也悄悄改变着我们。纳米精确新闻 1959年 理论物理学家理查·费伊曼在加州理工学院发表演讲,提出,组装原子或分子是可能的。 1981年,科学家发明研究纳米的重要工具———扫描隧道显微镜,原子、分子世界从此可见。 1990年,首届国际纳米科技会议在美国巴尔的摩举办,纳米技术形式诞生。 1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是铁的10倍,成为纳米技术研究的热点。 继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字,1999年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中国科学院北京真空物理实验室操纵原子成功写出“中国”二字。 1997年,美国科学家首次成功地用单电子移动单电子,这种技术可用于研制速度和存储容量比现在提高成千上万倍的量子计算机。同年,美国纽约大学科学发现,DNA可用于建造纳米层次上的机械装置。 1999年,巴西和美国科学家在进行碳纳米管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的“秤”,打破了美国和巴西科学家联合创造的纪录。同年,美国科学家在单个分子上实现有机开关,证实在分子水平上可以发展电子和计算装置。 纳米花边新闻 倾听细菌游弋 美国加利福尼亚州Pasadena市的喷气飞机推进器实验室目前正在研制一种被称为“纳米麦克风”的微型扩音器,据《商业周刊》报道,这种微型传感器可以使科学家倾听到正在游弋的单个细菌的声音,以及细胞体液流动的声音。这种人造纳米麦克风由细微的碳管制成,正是因为构成物体积细小和灵敏度极高,这种麦克风才能够在受到非常小的压力作用下作出反应,使得对其进行监测的研究人员获得相关的声音信息。 利用这种新产品,科学家将可以对其他星球上是否存在生命进行探测,可以探测到生物体内单个细胞的生长发育。这一仪器研制项目已获得美国航空航天局(NASA)的批准,而且NASA还向上述实验室提供了必要的技术支持。
编辑本段“纳米水”防强暴.
据《人民日报》报道,最近,广州一家公司宣称生产出一种用麦饭石和纳米特殊材料制作而成的“纳米珠”,只要把它放在水里,多脏的水也能喝。长期饮用“纳米水”,可抗疲劳,耐缺氧,甚至“增强女士防匪徒强暴的能力”。据了解,每盒纳米珠要300元,买齐整套设备(一台饮水机、一桶水和十盒纳米珠)则需3800元。76岁的何姓老人在推销员的百般说服下,不但相信纳米水的神奇疗效,还看中了纳米水的销售方式。老人背着家里人一共拿出22万元,买下75套纳米水机套装产品,然后等着每月2万元钱的分红。 广州市工商局东山分局经济检察中队在4月3日查处了该公司,其准备创造科技神话的纳米水根本没有科技鉴定说明,该公司的纳米水套装产品既无生产许可证,也没有产品合格证。
编辑本段光也能“吹动”物体
纳米世界,光也能“吹动”物体。当光照射在物体上,也会对物体产生作用力,就像风吹动帆一样。从儒勒·凡尔纳到阿瑟·C·克拉克,科幻作家们不止一次幻想过运用太阳光的作用力来推动“太阳帆”,驱动飞船在星际中航行。然而,在地球上,太阳光的作用力实在微乎其微,没有人能用阳光来移动一个物体。但是,在11月27日的《自然》杂志上,在美国耶鲁大学从事研究的中国学者发表文章,首次证实在纳米世界里,光真的可以驱动“机器”——由半导体做成的纳米机械。 这项研究,结合了相关图书。
两个最前沿的纳米科学领域,即纳米光子学和纳米力学。“在宏观尺度上,光的力实在太微弱,没有人能感觉到。但是在纳米尺度上,我们发现光具有相当可观的力,足以用来驱动像集成电路上的三极管一样大小的半导体机械装置。”领导此项研究的耶鲁大学电子工程系教授唐红星这样介绍。其实,此前光的力已经被物理学家和生物学家应用于一种叫做“光镊”的技术中,用来操控原子和微小的颗粒。“我们的研究则是把光集成在一块小小的芯片上,使它的强度增加数百万倍,从而用来操控纳米半导体器件。”这篇论文的第一作者、博士后研究员李墨进一步阐释说。 在耶鲁大学的实验室里,两位科学家和来自北京大学的研究生熊驰及合作者们一起,使用最先进的半导体制造技术,在硅芯片上铺设出一条条光的线路,称之为“光导”。当激光器发出的光被接入这样的芯片后,光就可以像电流在导线里一样,沿着铺好的光导线路“流”动。理论预测,在这样的结构中,光会对引导它的导线产生作用力。为了证实这样的预测,他们把一小段只有10微米长的光导悬空,让它可以像吉他弦般产生振动。如果光确实产生力并作用在它上面,那么当光的强度被调制到和光导的振动一致的频率时,共振就会产生。这样的共振就会在透射的光中产生同样频率的一个峰。这正是3位中国科学家经过半年多的实验和计算,最终在他们的测量仪器上看到的令人信服的现象。之后,他们通过大量实验证明,这个作用力的大小和理论预期非常一致。因为光的速度比电流要快得多,所以这种光产生的力预期可以以几十吉赫兹(GHz)的速度驱动纳米机械。 此项研究成果有望引领出新一代半导体芯片技术——用光来取代电。未来运用这种新技术,科学家和工程师们可以实现基于光学和量子原理的高速高效的计算和通信。
编辑本段纳米探针在药物筛选中首获应用
英国伦敦纳米技术中心的研究人员研制出一种新型纳米探针,利用该纳米探针可以检测出某种抗生素药物是否能够与细菌结合,从而减弱或破坏细菌对人体的破坏能力,达到治疗疾病的目的。这是科学家第一次将纳米探针运用于药物筛选,相关试验的初步结果已经刊登在最新一期的《自然?纳米技术》杂志上。 人们在用抗生素治病的过程中,引起疾病的细菌很容易产生抗药性,从而使得抗生素失去药效。抗生素的作用原理是与致病细菌的细胞壁结合后破坏细胞壁的结构,使得致病细菌死亡,一旦产生抗药性,细菌的细胞壁结构发生改变,细胞壁变厚,抗生素无法与细胞壁结合。 研究人员在一排纳米探针上覆盖组成细菌细胞壁的蛋白质,一旦抗生素与细胞壁结合,探针的表面重量就会增加,这一表面压力会导致纳米探针发生弯曲。通过对万古霉素药物的研究发现,抗药性细菌的细胞壁硬度是非抗药性细菌的1000倍。所以通过纳米探针探测出各种药物对细菌细胞壁的结构改变,筛选出对致病细菌破坏力最大的抗生素。纳米探针的运动轨迹。
编辑本段纳米金属
钴(Co)
高密度磁记录材料。利用纳米钴粉记录密度高、矫顽力高(可达119.4KA/m)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。 吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光——红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。
铜(Cu)
金属和非金属的表面导电涂层处理。纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 高效催化剂。铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。 导电浆料。用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。
铁(Fe)
高性能磁记录材料。利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。 吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光——红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 导磁浆料。利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。 纳米导向剂。一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。
镍(Ni)
磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。 高效催化剂。由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。 高效助燃剂。将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。 导电浆料。电子浆料广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要作用。用镍、铜、铝纳米粉体制成的电子浆料性能优越,有利于线路进一步微细化。 高性能电极材料。用纳米镍粉辅加适当工艺,能制造出具有巨大表面积的电极,可大幅度提高放电效率。 活化烧结添加剂。纳米粉末由于表面积和表面原子所占比例都很大,所以具有高的能量状态,在较低温度下便有强的烧结能力,是一种有效的烧结添加剂,可大幅度降低粉末冶金产品和高温陶瓷产品的烧结温度。 金属和非金属的表面导电涂层处理。由于纳米铝、铜、镍有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。
锌(Zn)
高效催化剂。锌及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。
纳米技术在衣服上的运用主要是在衣服的染色和整理过程中加入纳米材料,使衣服具有抗菌、自洁的新功能。
如今,纳米技术、纳米材料的应用研究如火如荼,纳米材料所具有的优越性能为当前的物质世界增添新的光彩,为人类发展奠定新的发展平台。有人预测,21世纪的技术革命将从纳米技术开始,也正因如此,无论发达国家还是发展中国家,为在未来科技领域占有一席之地,为把握新世纪发展技术,都不遗余力地开展纳米领域的研究工作。近十几年来,我国在纳米技术领域取得了很多成果,纳米技术也涉及到纺织品、个人防护用品、家庭生活用品等方面。但是,历史的经验早已证实,科学技术在造福人类的同时,也可能会给人类带来危害。
在2004年11月30日至12月2日期间召开的第243次香山科学会议中,把“纳米尺度物质的生物效应(即纳米安全性)”作为此次会议的主题,来自纳米科学、生物、化学、医学、物理、环境等多个领域的40多名专家一致呼吁加强纳米材料和纳米技术的生物环境安全性研究。会议执行主席、著名纳米科学专家白春礼院士在大会主题报告中指出:"任何技术都是有两面性的,纳米技术也可能同样是把双刃剑。我们要做的是,在发展纳米技术的同时,同步开展其安全性研究,使纳米技术有可能成为人类第一个在其可能产生负效应之前,就已经过认真研究,引起广泛重视,并最终能安全造福人类的新技术"。此外,美国Rice大学生物和环境纳米技术中心(CBEN)主任Vicki Colvin认为:纳米材料微小,有可能进入人体中那些大颗粒所不能到达的区域,如健康细胞[1]。此外,关于纳米颗粒对环境和人类健康安全性的研究和相关信息非常缺乏。美国环境保护机构(US出境environmental protection agency)已确认了一些关于纳米颗粒安全性评价的课题[2],例如:①人造纳米颗粒的毒理学;②使用已知颗粒和纤维的毒理数据外推人造纳米颗粒毒性的可能性;③人造纳米颗粒对环境和生物的传送、持续和转化等影响。
英国政府已委托英国皇家学会和英国皇家工程学院组成调查小组,调查纳米技术的安全性。2004年7月29日美国的《科学此刻》杂志及2004年8月4日《自然》杂志分别介绍了该研究小组的报告,对纳米材料的使用安全性发出预警。报告指出,游离的纳米颗粒和纳米管可能会穿透细胞,有损人体健康。该研究小组还建议英国政府设立一个研究中心,专门研究纳米颗粒对环境和人类健康的影响。美国和欧盟正在考虑规范纳米材料和纳米科技产品。
因此,在发展的同时我们应该时刻保持清醒的认识,理智而全面综合地研究与开发纳米技术。如此,才能发挥科学技术的巨大潜能,才能使科技更加有效地为人类服务。
1 纳米材料
纳米材料是指由纳米结构单元构成的任何类型的材料,其颗粒尺寸一般介于0.1nm到1OOnm之间。纳米材料具有一般材料所没有的特殊性能[3]:
(1)体积效应,又称小尺寸效应。当纳米粒子的尺寸与传导电子的波长及超导态的相干波长等物理尺寸相当或更小时,周期性的边界条件将被破坏。熔点、磁性、光吸收、热阻、化学活性、催化性等与普通粒子相比都有很大变化。
(2)表面效应。是指纳米粒子表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。纳米晶粒尺寸的减小结果导致其表面积、表面能及表面结合能的增大,并具有不饱和性质,表现出很高的化学活性。
(3)量子尺寸效应。微粒尺寸下降到一定值时,费密能级附近的电子能级由准连续能级变为离散能级,纳米材料中处于离散的量子化能级中的电子波动性使纳米材料具有一系列特殊性质,如特异性催化,强氧化性和还原性。
(4)宏观量子隧道效应。微观粒子贯穿势垒的能力称为隧道效应。磁化的纳米粒子具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,即宏观量子隧道效应。
(5)化学反应性质。纳米材料表面原子数多,吸附能力强,表面反应活性高。
(6)催化性质。纳米粒子晶粒体积小,比表面积大,表面活性中心多,其催化活性和选择性大大高于传统催化剂。而且,纳米催化剂没有孔隙,可避免使用常规催化剂时,反应物向孔隙扩散的影响。在使用纳米催化剂时,不必将其附着在惰性载体上,可以直接放入液相反应体系中。
(7)光学性质。纳米晶粒吸光能力强。
(8)其他性质。纳米材料具有硬度高、可塑性强、高比热和热膨胀、高导电率、高扩散性、烧结温度低、烧结收缩比大等性质。以上性质为其广泛应用奠定了基础。
目前,纳米技术和纳米材料在许多行业都有广泛深入的应用,如医学、环保、纺织、生物和电子等多个领域。而且,科研工作者还在不断地研究扩大纳米技术的应用范围。在纺织领域中,纳米技术的应用已有足够的积累和长足的发展。纺织行业中常用的纳米材料有:纳米TiO2、ZnO、SiO2,Fe2O3,、Al203、Cr2O3、纳米云母等[4]。通过一定的染整加工技术,将上述纳米材料处理到织物上后,可以赋予织物一定功能,如抗静电、防紫外线、抗电磁波辐射、抗菌除臭和防水防污等优良性能。然而,在纳米材料赋予纺织品功能化的同时,是否存在着使用安全隐患,目前还未见相关的专题报道。但是,我们应该主动积极地去探讨和研究。
2 国内外纳米材料的安全性研究现状
纳米材料的安全性问题日趋得到世界各国的高度重视。各国的高级研究机构和专家都在呼吁和关注纳米材料的安全性问题,政府也积极地投入了人力、物力去进行这方面的研究工作。但具体的研究进展和研究成果,公开的专业文献报道较少。
美国已开展了关于纳米材料对环境和人可能造成危害性的研究,重点研究的五个问题是:皮肤对纳米材料的吸附和对皮肤的毒性;同其他水源污染物相比,纳米颗粒进入饮用水后,是否有毒,如何起毒化作用;纳米颗粒对操作者肺部组织影响的研究;海洋或淡水水域中纳米颗粒沉淀物对环境的影响;以及在什么条件下,纳米颗粒可能吸收和释放环境污染物。国外,曾有研究人员对碳纳米管、纳米聚四氟乙烯和碳颗粒的生理毒性进行了实验,结果表明,长期吸入上述纳米微粒后,在肺部会发生沉积,对健康极其不利[5]。据《自然》杂志报道,纳米颗粒可以通过呼吸系统、皮肤接触、食用、注射等途径,进入人体组织内部。纳米颗粒进入人体后,由于其体积小,白由度大,反应活性高等特性,几乎不受任何阻碍就可以进入细胞,与体内细胞发生反应,引起发炎、病变等症状。同时,纳米颗粒也可能进入人的神经系统,影响大脑,导致更严重的疾病发生。纳米颗粒长期停留在人体内,同样会引发病变,如停留在肺部的石棉纤维会导致肺部纤维化。
在2004年的美国化学学会年会上,有三个研究小组分别报道了纳米材料具有特殊的毒性。休斯顿的美国宇航局太空中心小组的研究发现,向小鼠的肺部喷洒含有碳纳米管的溶液,碳纳米管会进入小鼠肺泡,并形成肉芽瘤。杜邦公司的一个研究小组也发现了类似的结果。纽约州罗切斯特大学的一个研究小组让大鼠在含有纳米聚四氟乙烯颗粒的空气中生活l5min,就会导致大多数老鼠在4个小时内死亡。该研究小组还发现用碳13和锰制作的纳米颗粒能够进入大鼠的嗅球,并迁移到大脑。
国内,曾有人研究过桑蚕皮肤对纳米TiO2的吸收情况。实验结果发现[6]:经过石蜡包衣的纳米TiO2粒子和非纳米级普通TiO2粉末不能经桑蚕皮肤被收人体内,但纳米TiO2粒子可以通过皮肤被吸入桑蚕体内,并导致实验中的全部桑蚕死亡。这说明本身无毒、无味的纳米TiO2粒子经皮肤进入桑蚕体内后,具有毒负作用。可是,纳米TiO2粒子的具体毒负作用机理,还未见相应的研究报道。青岛大学马建伟等人[7]通过对豚鼠静脉注射稀土纳米材料试验后发现,实验中所用的稀土纳米材料对琢鼠红细胞膜造成了较大的破坏,使得红细胞的溶血脆性明显增加,这说明稀土纳米材料具有一定的细胞毒性。
尽管作为专题去研究纳米材料安全性问题的研究者较少,但我们在广泛应用纳米技术,享受纳米材料给人类带来正面效应的同时,要时刻关注和研究纳米材料可能给人类带来的负面危害性。目前,纺织领域与其他行业领域相比,对纳米技术和纳米材料的利用度较高。已经可以开发和生产出各类含有纳米材料的功能性面料。而且,纳米纺织品的市场份额也在逐渐地扩大。在纳米技术和纳米材料给纺织领域带来新一次技术革命的同时,是否会伴随着一些负面影响,有待我们去进一步研究。
目前,商家和媒体对纳米纺织品的开发和报道可谓是一浪高过一浪,这当然为我们纺织领域充分利用纳米技术,开发纺织用纳米材料营造了良好的氛围,以利于更多的功能性、智能化的新型纺织品面世。但如今让我们担心的是,对纳米纺织品的服用安全性研究很少。虽有研究者已对纳米微粒的使用安全性进行了研究报道,检测了某些纳米材料的生物毒性和环境污染性。但是,这只是对单一纳米材料的研究,还处于基础研究阶段。当纳米材料处理到织物上后,织物上原有的化学品是否会与纳米材料发生反应而降低织物的使用性,甚至产生对人体有害的新物质呢?如果有反应,它们的反应机理是什么,作用过程又如何?由于纳米微粒的尺寸很小,是否会从织物上迁移到人体内部。所有这些问题,还有待于去研究探讨。
3 结语
纳米技术的应用和纳米材料的开发是我们的共同目标。同时,对纳米技术和纳米材料的使用安全性研究,也是我们的共同责任。这里需要指明的是,对其可能带来的危害性研究,并不会妨碍纳米技术的向前发展。其研究目的更是为了更好地促进纳米技术的应用和纳米材料的开发。使得纳米技术呈良性发展态势,充分造福人类!
本文地址:http://www.dadaojiayuan.com/zhongyizatan/76204.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
上一篇: 彩妆品新原料(一)