英国《新科学家》周刊最近刊发了一篇题为“纳米管捕捉‘汉堡细菌’”的文章,编译如下:
去除饮用水中可能致命的细菌或许会成为碳纳米管最早的实际用途之一。
科研人员已研制出能让细菌聚结成块的纳米管,随后就可以将菌块从水中滤出,并消灭它们。他们进行的实验很容易用于实践。
美国南加州克莱姆森大学负责此项研究的孙亚平说,这种纳米管最初或可用作水净化处理厂的过滤器。他的研究成果发表在最新一期的《化学通讯》杂志上。
新研制的纳米管能捕捉大肠杆菌O157:H7,即臭名昭著的“汉堡细菌”,被它污染的肉可能置食客于死地。他给纳米管表面覆上一层半乳糖分子,而半乳糖分子能与大肠杆菌表面的受体蛋白粘合。每根纳米管都覆有数以百计的半乳糖分子,因此能一举拿下大量细菌。
该研究小组还研制了能捕捉污染食物的另一种常见细菌——空肠弯曲杆菌——的纳米管。这种细菌多见于鸡肉之中。这一次纳米管的表面覆有甘露糖分子,它能与空肠弯曲杆菌表面的受体粘合。孙说:“我们正在研制覆有能捕捉不同细菌的多种配位体‘糖’的纳米管。这是可行的。”
从理论上说,这种纳米管可用来将细菌从患者的血液中滤出,不过它们必须首先经过试验,排除任何毒副作用的可能。英国史密斯叔侄公司的彼得·阿诺德说:“将来,类似于这类碳纳米管的交互性生物材料有望选择性地捕捉和消灭致病细菌。”该公司是一家医疗技术公司,正在研制能加快组织修复的生物材料。
研制临床诊断用的纳米材料的英国奥克斯尼卡公司的凯文·马修斯说,孙的工作是传统无机化学与生物化学相结合的极好的例子,二者结合“提供的可能性超越了其中任何一种技术单独所能提供的可能性”。
由科研人员提取蚕丝中的蛋白质生产而成,这种人造皮肤就像用蚕丝做成的服装面料一样,具有丝绸般的光滑平整和柔韧特性。而且,与目前治疗大面积损伤时最常用的猪皮材料相比,它安全性更高。
这种新型的人造皮肤。乍一看像馄饨皮的人造皮肤,用手拉拉却韧性十足。从冰箱取出,自然解冻,消毒浸泡,贴在创伤皮肤表面,半个月左右创伤就会慢慢愈合。为验证其功效,科研人员曾选取了15只大白兔分5批进行动物试验,结果发现,贴上人造皮肤后,兔子身上直径3厘米的创口不到20天就得以愈合。 名为ICX-SKN的人造皮肤
研制者:从事细胞疗法研究的Intercytex集团
名为ICX-SKN的人造皮肤,这种皮肤在28天后可完全与人体结合,封闭并愈合伤口。 在初步的临床实验中,由于质地逼真,耐久性好,人造皮肤移植取得突破性成功。
ICX-SKN是由自体皮肤细胞产生的一种基质,即结缔组织细胞构成的。结缔组织细胞能在天然皮肤中形成骨胶原。这些结缔组织细胞可构成类似于真实皮肤的组织结构。
实验只涉及小面积局部皮肤移植,对于大面积烧伤患者的移植效果尚属未知。 白鼠体上移植的人造皮肤
研制者:第四军医大学的研究人员
从新生或出生前的试验鼠身上取出少量皮肤组织,采用灭菌、消化、分离、培养等手段,获得了足够的细胞数量后,再用组织工程的办法将其重新组合,成功地研制出具有表皮组织和结缔组织的皮肤。这个过程用一个形象的比喻就是在器皿中“种皮肤”。试验人员将这些人造皮肤移植到白鼠身上,经过观察发现,人造皮肤不仅具有正常皮肤的部分功能,而且具有良好的修复皮肤创伤的作用,到目前为止并未发现有免疫排斥反应。可以说,人造“鼠皮”已研制成功。当然,这种皮肤与真正的皮肤还有差距,比如说没有汗腺和毛发等附属物。
这项技术的先进性在于,国内的人造皮肤研究仅能进行表皮的复制,四军医大则发展出带有结缔组织第二层的皮肤。中国对人工皮肤的研究,虽然比西方发达国家起步晚,但是已受到国家的高度重视。解放军第二军医大学附属长海医院烧伤科在国家的资助下,建立了表皮细胞快速培养扩增技术,研制了来源广、价格低的无细胞真皮基质高分子聚合物膜等人工真皮,体外构建了含表皮细胞的复合皮,并用于修复深度皮肤缺损创面,移植存活率高,一些成果已达国际领先水平。 由美国宇航局科学家研制的一种新型人造皮肤
采用垂直碳纳米管层排列在整容手术所使用的橡胶聚合物上,就像是植入一块皮肤一样,碳纳米管通过金丝的串接固定在一起。这些碳纳米管分布在橡胶状的聚合物上,这种结合橡胶聚合物和碳纳米管的人造皮肤能够将接触表面的热量传递至传感器网络,就如同皮肤能够及时获取该信息一样。碳纳米管提高聚合物上的压电感应后,传感器能够向机器人大脑产生一种信号。
美国宇航局戈达德太空飞行中心技术专家弗拉迪米尔-鲁梅尔斯基将传感器植入机器人的皮肤覆盖层中,这种高科技机器人皮肤可使机器人更出色地完成太空探索任务,人类和机器人的“身体状况”不一样为了实现机器人的智能化,机器人也需要敏感的皮肤产生一定的触感。
研制了能够产生压觉和温觉的机器人皮肤,这种人造皮肤能够探测和人类皮肤同步探测到各种事物。用于电路和半导体中的晶体管成为基于碳原子链的“皮肤器官原料”,这样机器人能够像人类一样具有触觉。
尽管人造手在行动和灵活度上日益逼真,但是几乎所有的人造皮肤仍然停留在无感知的塑料涂层水平上,美国橡树岭国家实验室纳米材料合成和属性小组的高级研究科学家约翰-西姆普森博士说:“通过运用碳纳米管技术,我们造出的人造皮肤不但可以接近真实皮肤特性,甚至可以超越这些特性”。
心肺机作为暂时性替代自然心脏与肺功能的装置,是一种重要的临时性的人工器官。人工心肺机主要由血泵(心) 和氧合器(肺) 组成。当前人工心肺机的类型,是鼓泡式人工肺和膜式人工肺,血泵主要采用滚压泵和搏动泵。由于膜式氧合器是一种极其理想的人工肺,所以基本上取代了鼓泡式氧合器。另外,由于搏动泵模拟自然心脏的搏动,搏动泵有替代滚压泵的趋势。目前膜式人工肺大多采用中空纤维型,研究的重点主要是通过对中空纤维的预处理,提高其性能。例如:对中空纤维肝素化处理可防止体液和细胞的激活,提高其生物相容性;采用硅树脂涂层可防止使用时血浆渗漏;采用白蛋白、carmeda 等膜钝化涂层可提高血液相容性。
9月27日,中国科学院化学所的专家宣布研制成功新型纳米材料———超双疏性界面材料。这种材料具有超疏水性及超疏油性,制成纺织品,不用洗涤,不染油污;用于建筑物表面,防雾、防霜,更免去了人工清洗。专家称:纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”。 随着科学家的一次次努力,“纳米”这个几年前对我们还十分生疏的字眼,眼下却频频出现在我们的视线。 纳米是一个长度单位,1纳米等于十亿分之一米,20纳米相当于1根头发丝的三千分之一。90年代起,各国科学家纷纷投入一场“纳米战”:在0.10至100纳米尺度的空间内,研究电子、原子和分子运动规律和特性。
中国当然不甘人后,1993年,中国科学院北京真空物理实验室操纵原子成功写出“中国”二字,标志着我国开始在国际纳米科技领域占有一席之地,并居于国际科技前沿。
1998年,清华大学范守善小组在国际上首次把氮化镓制成一维纳米晶体。同年,我国科学家成功制备出金刚石纳米粉,被国际刊物誉为:“稻草变黄金———从四氯化碳制成金刚石。”
1999年,北京大学教授薛增泉领导的研究组在世界上首次将单壁碳纳米管组装竖立在金属表面,并组装出世界上最细且性能良好的扫描隧道显微镜用探针。
中科院成会明博士领导的研究组合成出高质量的碳纳米材料,被认定为迄今为止“储氢纳米碳管研究”领域最令人信服的结果。
中科院物理所研究员解思深领导的研究组研制出世界上最细的碳纳米管———直径0.5纳米,已十分接近碳纳米管的理论极限值0.4纳米。这个研究小组,还成功地合成出世界上最长的碳纳米管,创造了“3毫米的世界之最”。
在主题为“纳米”的争夺战中,中国人频频露脸,尤其在碳纳米管合成以及高密度信息存储等领域,中国实力不容小觑。科学界的努力,使“纳米”不再是冷冰冰的科学词,它走出实验室,渗透到百姓的衣食住行中,居室环境日益讲究环保。传统的涂料耐洗刷性差,时间不长,墙壁就会变得斑驳陆离。现在有了加入纳米技术的新型油漆,不但耐洗刷性提高了十多倍,而且有机挥发物极低,无毒无害无异味,有效解决了建筑物密封性增强所带来的有害气体不能尽快排出的问题。
人体长期受电磁波、紫外线照射,会导致各种发病率增多或影响正常生育。现在,加入纳米技术的高效防辐射服装———高科技电脑工作装和孕妇装问世了。科技人员将纳米大小的抗辐射物质掺入到纤维中,制成了可阻隔95%以上紫外线或电磁波辐射的“纳米服装”,而且不挥发、不溶水,持久保持防辐射能力。同样,化纤布料制成的衣服因摩擦容易产生静电,在生产时加入少量的金属纳米微粒,就可以摆脱烦人的静电现象。白色污染也遭遇到“纳米”的有力挑战。科学家将可降解的淀粉和不可降解的塑料通过特殊研制的设备粉碎至“纳米级”后,进行物理结合。用这种新型原料,可生产出100%降解的农用地膜、一次性餐具、各种包装袋等类似产品。农用地膜经4至5年的大田实验表明:70到90天内,淀粉完全降解为水和二氧化碳,塑料则变成对土壤和空气无害的细小颗粒,并在17个月内同样完全降解为水和二氧化碳。专家评价说,这是彻底解决白色污染的实质性突破。
从电视广播、书刊报章、互联网络,我们一点点认识了“纳米”,“纳米”也悄悄改变着我们。纳米精确新闻 1959年 理论物理学家理查·费伊曼在加州理工学院发表演讲,提出,组装原子或分子是可能的。
1981年,科学家发明研究纳米的重要工具———扫描隧道显微镜,原子、分子世界从此可见。
1990年,首届国际纳米科技会议在美国巴尔的摩举办,纳米技术形式诞生。
1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是铁的10倍,成为纳米技术研究的热点。
继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字,1999年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中国科学院北京真空物理实验室操纵原子成功写出“中国”二字。
1997年,美国科学家首次成功地用单电子移动单电子,这种技术可用于研制速度和存储容量比现在提高成千上万倍的量子计算机。同年,美国纽约大学科学发现,DNA可用于建造纳米层次上的机械装置。
1999年,巴西和美国科学家在进行碳纳米管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的“秤”,打破了美国和巴西科学家联合创造的纪录。同年,美国科学家在单个分子上实现有机开关,证实在分子水平上可以发展电子和计算装置。 纳米花边新闻倾听细菌游弋
美国加利福尼亚州Pasadena市的喷气飞机推进器实验室目前正在研制一种被称为“纳米麦克风”的微型扩音器,据《商业周刊》报道,这种微型传感器可以使科学家倾听到正在游弋的单个细菌的声音,以及细胞体液流动的声音。这种人造纳米麦克风由细微的碳管制成,正是因为构成物体积细小和灵敏度极高,这种麦克风才能够在受到非常小的压力作用下作出反应,使得对其进行监测的研究人员获得相关的声音信息。
利用这种新产品,科学家将可以对其他星球上是否存在生命进行探测,可以探测到生物体内单个细胞的生长发育。这一仪器研制项目已获得美国航空航天局(NASA)的批准,而且NASA还向上述实验室提供了必要的技术支持。
本文地址:http://www.dadaojiayuan.com/zhongyizatan/76080.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!