登录
首页 >> 中医基础常识 >> 杂谈

美开发出远程核磁共振成像软件(核磁共振成像术有哪些方面的应用?)

医案日记 2023-06-18 20:55:08

美开发出远程核磁共振成像软件

美国研究人员最新开发出一种远程的核磁共振成像扫描软件,医生可以通过因特网对患者进行远程扫描,那些医疗条件有限的地区可以借助这种远程医疗技术为患者提供便利。

研究人员在11月号的《放射学》杂志上报告说,医疗扫描是病情诊断的重要工具,有些特殊的扫描,比如核磁共振成像、新生儿心脏扫描等对操作人员的要求很高,必须由经验丰富的放射线医师来操作。但有些条件有限的地区,缺乏高水平的放射线扫描专家。加利福尼亚大学洛杉矶分校与“西门子医疗解决方案”公司合作开发的这种远程医疗软件,有效解决了这个问题。借助这种软件系统,医生可以登录自己的电脑,通过因特网远程操控核磁共振成像仪,为异地的患者进行远程检测。

研究负责人、加州大学洛杉矶分校放射线学教授保罗•芬恩说,他共对30位患者进行了远程扫描,扫描的清晰度等指标丝毫不亚于实地扫描。芬恩认为,随着因特网的速度及可靠性不断提高,远程扫描技术还会不断精益求精,从而克服异地治疗的距离障碍。

核磁共振成像术有哪些方面的应用?

1946年,美国哈佛大学的伯塞尔和斯坦福大学的布洛克两名教授分别发现了“核磁共振”的现象,并为此在1952年获得了诺贝尔物理学奖。

这个物理现象一经发现,立即受到高度重视,在一些领域里马上得到应用。1972年,就有一些医生提出了利用核磁共振的原理做医疗诊断的设想。经过大约10年的研究和实验,此项技术日臻成熟,终于,在80年代,科学家将核磁共振原理同空间编码技术、数学变换和电影电视影像技术结合,发明了一种崭新的扫描技术——核磁共振成像术(简称MRI)。

MRI是一种比X射线成像更为优越的技术。它不需要通过放射线照射和扫描来形成影像,对人体更安全,可以说是彻底的无损伤检查。它的工作原理颇复杂,让我们简略介绍一下吧。

我们知道,世上万物均由原子组成,原子又是由原子核和围着原子核旋转的电子组成,原子核则是由带正电荷的质子和不带电荷的中子组成。许多原子核的运动类似“自旋体”,不停地以一定的频率自旋,如能设法让它进入一个恒定的磁场的话,它就会沿着这磁场方向回旋。这时如用特定的射频电磁波去照射这些含有原子核的物体,物体就会吸收电磁波的能量,发生“共振”;当射频电磁波撤掉后,吸收了能量的原子核又会把这部分能量以电磁波的形式释放出来,即发射所谓“核磁共振”信号。

这种核磁共振信号携带着物质内部结构的大量信息。对这些信号进行测量和分析,可以进一步获得此物质的物理和化学信息,比如密度、分布特点及组织的成分等。也就是说,可以通过核磁共振现象来了解物体内部的情况。

在人体中有着大量的水,有着许许多多氢原子,MRI就是利用人体中的氢原子,在强磁场内受到脉冲的激发后,所产生的核磁共振现象。在共振过程中,不同的组织器官的共振信号强度不同,恢复到激发前的平衡状态所需的时间也不同,这些信息经过电子计算机的处理后形成不同的图像。这种图像很清楚,不仅可以提供人体清晰的解剖细节,而且还能提供组织器官和病灶细胞内外的物理、化学、生物和生物化学等方面的诊断信息,便于医生据此作出诊断。

在做MRI检查时,病人要拿掉身上各种带金属的物件,平躺在检查床上,然后被徐徐送入诊室,程序十分简便。它不必使用任何造影剂,即可显示出血管等微细结构。它还可以从任何方向做切层检查,且成像有高度灵活性,分辨率高,仅在短短的一二秒钟内即可成像。

MRI不但能够像CT一样提供受检部位解剖信息的图像,还可以为我们提供有关组织生理生化信息的专门图像,比CT更灵敏地分辨出正常或异常的组织,为我们清楚地显示出病变的部位、范围,常可在病变处器官的形状、功能还未出现明显改变之前,就向人们发出警告。所以它在对肿瘤的早期检测及鉴别肿瘤的性质上有特别大的帮助。

MRI除了可以显示任何方向截面解剖部位的病变外,还可以透过骨骼的屏障,获得令人满意的断层图像,所以在临床应用中,MRI某些方面的功效明显优于CT。可以说,MRI是一种比CT用途更广泛的新型检查仪器。

1995年2月,一个即将被执行死刑的美国犯人,为表示他对自己罪行的追悔和对世人的歉意,表示愿将遗体献给科学机构作研究之用。科学家在犯人被处决之前先用MRI对他的身体进行成像扫描,获得许多图像资料。在处决后又将他的遗体冷冻后从头到脚切成2700片不及1毫米厚的薄片,再一一照相。科学家对这些相片与MRI获得的断层图像作比较,从中获取所需要的信息。这2700张断面照片现已由德国慕尼黑的一家电子企业加工成光盘,它是世界上第一张详细记录人体内部结构图像的光盘。它的问世,不仅可为医学院提供史无前例的详尽的人体解剖资料,对人们如何进一步用好、改进包括MRI在内的新型医疗检查仪器,也会有很大的作用。

求有关核磁共振成像的资料

资料:核磁共振成像磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。

核磁共振(nuclear magnetic resonance,NMR)是一种核物理现象。早在1946年Block与Purcell就报道了这种现象并应用于波谱学。Lauterbur1973 年发表了MR成象技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。为了准确反映其成像基础,避免与核素成像混淆,现改称为磁共振成象。参与MRI 成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。

一、 MRI的成像基本原理与设备

(一)磁共振现象与MRI

含单数质子的原子,例如人体内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体(图1-5-1)。小磁体自旋轴的排列无一定规律。但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列(图1-5-2)。在这种状态下,用特定频率的射频脉冲(radionfrequency,RF)进行激发,作为小磁体的氢原子核吸收一定量的能而共振,即发生了磁共振现象。停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。这一恢复过程称为弛豫过程(relaxationproces),而恢复到原来平衡状态所需的时间则称之为弛豫时间(relaxationtime)。有两种弛豫时间,一种是自旋-晶格弛豫时间(spin-lattice relaxationtime)又称纵向弛豫时间(longitudinal relaxation time)反映自旋核把吸收的能传给周围晶格所需要的时间,也是90°射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称 T1。另一种是自旋-自旋弛豫时间(spin-spin relaxation time),又称横向弛豫时间(transverse relaxation time)反映横向磁化衰减、丧失的过程,也即是横向磁化所维持的时间,称T2。T2衰减是由共振质子之间相互磁化作用所引起,与T1不同,它引起相位的变化。

图1-5-2 正常情况下,质子处于杂乱无章的排列状态。当把它们放入一个强外磁场中,就会发生改变。它们仅在平行或反平行于外磁场两个方向上排列

人体不同器官的正常组织与病理组织的T1是相对固定的,而且它们之间有一定的差别,T2也是如此(表1-5-1a、b)。这种组织间弛豫时间上的差别,是MRI的成像基础。有如CT时,组织间吸收系数(CT值)差别是CT成像基础的道理。但MRI不像CT只有一个参数,即吸收系数,而是有T1、T2和自旋核密度(P)等几个参数,其中T1与T2尤为重要。因此,获得选定层面中各种组织的T1(或T2)值,就可获得该层面中包括各种组织影像的图像。

MRI的成像方法也与CT相似。有如把检查层面分成Nx,Ny,Nz……一定数量的小体积,即体素,用接收器收集信息,数字化后输入计算机处理,获得每个体素的T1值(或T2值),进行空间编码。用转换器将每个T值转为模拟灰度,而重建图像。

表1-5-1a 人体正常与病变组织的T1值(ms)



140~170

脑 膜 瘤

200~300



180~200

肝癌

300~450



300~340

肝血管瘤

340~370

胆汁

250~300

胰 腺 癌

275~400

血液

340~370

肾癌

400~450

脂肪

60~80

肺 脓 肿

400~500

肌肉

120~140

膀 胱 癌

200~240

表1-5-1b 正常颅脑的T1与T2值(ms)

组 织

T1

T2

胼胝体

380

80

桥 脑

445

75

延 髓

475

100

小 脑

585

90

大 脑

600

100

脑脊液

1155

145

头 皮

235

60

骨 髓

320

80

(二)MRI设备

MRI的成像系统包括MR信号产生和数据采集与处理及图像显示两部分。MR信号的产生是来自大孔径,具有三维空间编码的MR波谱仪,而数据处理及图像显示部分,则与CT扫描装置相似。

MRI设备包括磁体、梯度线圈、供电部分、射频发射器及MR信号接收器,这些部分负责MR信号产生、探测与编码;模拟转换器、计算机、磁盘与磁带机等,则负责数据处理、图像重建、显示与存储(图1-5-3)。

磁体有常导型、超导型和永磁型三种,直接关系到磁场强度、均匀度和稳定性,并影响MRI的图像质量。因此,非常重要。通常用磁体类型来说明MRI设备的类型。常导型的线圈用铜、铝线绕成,磁场强度最高可达0.15~0.3T*,超导型的线圈用铌-钛合金线绕成,磁场强度一般为0.35~2.0T,用液氦及液氮冷却;永磁型的磁体由用磁性物质制成的磁砖所组成,较重,磁场强度偏低,最高达0.3T。

梯度线圈,修改主磁场,产生梯度磁场。其磁场强度虽只有主磁场的几百分之一。但梯度磁场为人体MR信号提供了空间定位的三维编码的可能,梯度场由X、Y、Z三个梯度磁场线圈组成,并有驱动器以便在扫描过程中快速改变磁场的方向与强度,迅速完成三维编码。

射频发射器与MR信号接收器为射频系统,射频发射器是为了产生临床检查目的不同的脉冲序列,以激发人体内氢原子核产生MR信号。射频发射器及射频线圈很象一个短波发射台及发射天线,向人体发射脉冲,人体内氢原子核相当一台收音机接收脉冲。脉冲停止发射后,人体氢原子核变成一个短波发射台,而MR信号接受器则成为一台收音机接收MR信号。脉冲序列发射完全在计算机控制之下。

MRI设备中的数据采集、处理和图像显示,除图像重建由Fourier变换代替了反投影以外,与CT设备非常相似

二、MRI检查技术

MRI的扫描技术有别于CT扫描。不仅要横断面图像,还常要矢状面或(和)冠状面图像,还需获得T1WI和T2WI。因此,需选择适当的脉冲序列和扫描参数。常用多层面、多回波的自旋回波(spin echo,SE)技术。扫描时间参数有回波时间(echo time,TE)和脉冲重复间隔时间(repetition time,TR)。使用短TR和短TE可得T1WI,而用长TR和长TE可得T2WI。时间以毫秒计。依TE的长短,T2WI又可分为重、中、轻三种。病变在不同T2WI中信号强度的变化,可以帮助判断病变的性质。例如,肝血管瘤T1WI呈低信号,在轻、中、重度T2WI上则呈高信号,且随着加重程度,信号强度有递增表现,即在重T2WI上其信号特强。肝细胞癌则不同,T1WI呈稍低信号,在轻、中度T2WI呈稍高信号,而重度T2WI上又略低于中度 T2WI的信号强度。再结合其他临床影像学表现,不难将二者区分。

MRI常用的SE脉冲序列,扫描时间和成像时间均较长,因此对患者的制动非常重要。采用呼吸门控和(或)呼吸补偿、心电门控和周围门控以及预饱和技术等,可以减少由于呼吸运动及血液流动所导致的呼吸伪影、血流伪影以及脑脊液波动伪影等的干扰,可以改善MRI的图像质量。

为了克服MRI中SE脉冲序列成像速度慢、检查时间长这一主要缺点,近年来先后开发了梯度回波脉冲序列、快速自旋回波脉冲序列等成像技术,已取得重大成果并广泛应用于临床。此外,还开发了指肪抑制和水抑制技术,进一步增加MRI信息。

MRI另一新技术是磁共振血管造影(magnetic resonance angiography,MRA)。血管中流动的血液出现流空现象。它的MR信号强度取决于流速,流动快的血液常呈低信号。因此,在流动的血液及相邻组织之间有显著的对比,从而提供了MRA的可能性。目前已应用于大、中血管病变的诊断,并在不断改善。MRA不需穿剌血管和注入造影剂,有很好的应用前景。 MRA还可用于测量血流速度和观察其特征。

MRI也可行造影增强,即从静脉注入能使质子弛豫时间缩短的顺磁性物质作为造影剂,以行 MRI造影增强。常用的造影剂为钆——二乙三胺五醋酸(Gadolinium-DTPA, Gd-DTRA)。这种造影剂不能通过完整的血脑屏障,不被胃粘膜吸收,完全处于细胞外间隙内以及无特殊靶器官分布,有利于鉴别肿瘤和非肿瘤的病变。中枢神经系统MRI作造影增强时,症灶增强与否及增强程度与病灶血供的多少和血脑屏障破坏的程度密切相关,因此有利于中枢神经系统疾病的诊断。

MRI还可用于拍摄电视、电影,主要用于心血管疾病的动态观察和诊断。

基于MRI对血流扩散和灌注的研究,可以早期发现脑缺血性改变。它预示着很好的应用前景。

带有心脏起搏器的人需远离MRI设备。体内有金属植入物,如金属夹,不仅影响MRI的图像,还可对患者造成严重后果,也不能进行MRI检查,应当注意。

三、MRI的临床应用

MRI诊断广泛应用于临床,时间虽短,但已显出它的优越性。

在神经系统应用较为成熟。三维成像和流空效应使病变定位诊断更为准确,并可观察病变与血管的关系。对脑干、幕下区、枕大孔区、脊髓与椎间盘的显示明显优于CT。对脑脱髓鞘疾病、多发性硬化、脑梗塞、脑与脊髓肿瘤、血肿、脊髓先天异常与脊髓空洞症的诊断有较高价值。

纵隔在MRI上,脂肪与血管形成良好对比,易于观察纵隔肿瘤及其与血管间的解剖关系。对肺门淋巴结与中心型肺癌的诊断,帮助也较大。

心脏大血管在MRI上因可显示其内腔,所以,心脏大血管的形态学与动力学的研究可在无创伤的检查中完成。

对腹部与盆部器官,如肝、肾、膀胱,前列腺和子宫,颈部和乳腺,MRI检查也有相当价值。在恶性肿瘤的早期显示,对血管的侵犯以及肿瘤的分期方面优于CT。

骨髓在MRI上表现为高信号区,侵及骨髓的病变,如肿瘤、感染及代谢疾病,MRI上可清楚显示。在显示关节内病变及软组织方面也有其优势。

MRI在显示骨骼和胃肠方面受到限制。

MRI还有望于对血流量、生物化学和代谢功能方面进行研究,对恶性肿瘤的早期诊断也带来希望。

在完成MR成像的磁场强度范围内,对人体健康不致带来不良影响,所以是一种非损伤性检查。

但是,MRI设备昂贵,检查费用高,检查所需时间长,对某些器官和疾病的检查还有限度,因之,需要严格掌握适应证。

现有的医学图像处理软件有哪些?

现有的医学图像处理软件:
HALCON、VISION PRO、NI VISION、NI VISION BUILDER AI、EVISION、MATHMATICS、OPENCV等等。
医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像 (X—CT) ,核磁共振成像 (MRI),核医学成像 (NMI)和超声波成像(UI) 这四类 。

本文地址:http://www.dadaojiayuan.com/zhongyizatan/76016.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章