登录
首页 >> 中医基础常识 >> 杂谈

EPO类药物何去何从FDA将讨论对其进行限制

医案日记 2023-05-07 22:34:22

EPO类药物何去何从FDA将讨论对其进行限制

近日,美国医学协会JAMA杂志刊出了新的研究。研究者根据多临床研究所收集的试验数据进行Meta分析(荟萃分析),结果显示:两种重组人类促红细胞生成素(EPO)类抗贫血药,安进公司的Aranesp和强生公司的Procrit用于肿瘤病人临床治疗时,可能会使的死亡几率增加大约10%!一研究结果对于安进和强生公司的治疗贫血药物而言,可谓是火上浇油。

“炒冷饭”

研究发现,抗贫血药物有可能会增加死亡风险,这是根据以前的临床试验数据作出的新分析。论文的作者,美国西北大学教授CharlesL.Bennett表示,这一结果表明安进公司的Aranesp和强生公司的Procrit会增加用药患者的死亡率。

安进公司表示,这项所谓的“最新研究”几乎没有提供新的信息。“文中所讨论的风险,我们早已在药品标签上注明”,安进公司负责药品研发的执行副总裁RogerPerlmutter这样评论。去年曾经有系列研究表明,如果过量使用该产品,可能会使癌症患者病情恶化甚至加速其死亡。此后,FDA要求制药公司在药品说明标签上加入措辞为严厉的警告。随后,联邦医疗保健计划大幅削减和限制对于该药用于治疗癌症化疗引起贫血的补偿。Aranesp本来是安进公司最畅销的产品,但受上述因素影响,该药的销售额从2006年的41亿美元下降到了去年的36亿美元。

这个最新的Meta分析与另一个去年公布的对药物涂层支架所作的类似分析比较接近,都是用已知的老数据来证明以前的老话题(药物支架的Meta分析实际上帮了强生公司的忙,但却伤害了波士顿科学公司)。之前克利夫兰医学中心的StevenNissen博士所作的Meta分析发现的是新的临床用药隐患,即病人长期服用葛兰素史克公司的文迪雅后会增加发生心脏病的危险。而关于贫血药物副作用及药物涂层支架的Meta分析基本上是利用旧资料来“炒冷饭”。

应该说类似的新闻报道并非首次见诸报端,至今这两家公司尚未摆脱此事带来的困扰。FDA的一个咨询委员会计划于3月13日开会讨论可能出台的各种建议,以及是否进一步限制安进的Aranesp和强生的Procrit临床应用于癌症患者。鉴于种种负面影响,FDA的顾问小组可能会建议禁止这两种药物用于癌症病人,但由于仍有足够证据显示该药有助于减少患者输血的几率,所以要全面封杀该药用于癌症患者可能性很小。最大的可能就是顾问小组将会建议医生待病人贫血变得更为严重时,才给予患者使用该药治疗。这将严重影响两种药物的市场销售,因为许多贫血病人根本不会达到适合使用该药的“新门槛”。在FDA的顾问委员会召开会议之前,投资者不会知道临床试验结果的发布会对该药造成多大损害,如果仅仅是根据以往那些旧数据所作的Meta分析根本不会改变会议的结局。

方案不外三种

分析师们预计有3种方案可能会在近期的会议上进行讨论。方案是禁止该药用于特定类型的癌症,如乳癌及头部和颈部的癌症;另外一种方案是要求推迟使用该药用于某些适应症的时间,直到病人的贫血变得更为严重时,才允许医生开处方给病人使用,这一方案与联邦医疗保险计划的补偿政策更为接近;第三种方案是FDA不再允许该药用于治疗化疗引起的贫血,但仍然可用于治疗因肾脏疾病引起的贫血。

多数分析师认为第三种方案的可能性很小。投资公司雷曼兄弟的分析师JimBirchenough在周一发布的一项研究报告中预测,如果取消关于化疗引起的贫血这一适应症,会使安进公司的销售额减少大约10亿美元。即使仅仅是通过改变标签来满足联邦医疗保健计划的报销政策,其销售收入也会减少3亿美元。

应该说,这一新的对死亡风险的分析将会在3月13日的讨论会中起到一定的影响作用,这项分析结合了来自51个临床试验、涉及13611例病人的数据。研究还发现该药另一已知的副作用,即用药患者在静脉中出现血块的几率要增加57%。肿瘤学家、血液病医生Bennett博士说,他不认为这更高的死亡危险来自于那些血液凝块。相反,他认为有证据表明这一与天然激素-促红细胞生成素类似的人工合成药物会直接刺激肿瘤的生长和扩散。安进的科学家们对这种看法和解释持有异议。

由强生公司经过安进公司产品许可销售的Procrit于1993年被FDA批准用于治疗癌症病人,新一代产品Aranesp由于能够减少输血的需求,于2002年被批准上市。但当时的临床研究因为规模及时间的限制尚不能用来评估药物是否会影响病人的寿命。因此,研究者们正努力将许多规模较小的临床试验汇集在一起进行分析,以确定该药是否存在安全问题。

一个国际研究小组在一项命名为Cochrane的协作研究中,对多项临床研究项目所做的Meta分析,显示病人获得该药物治疗后往往会活得更久。这一结果早在2004年就已发表。但近年来,又有一些新的临床试验,初衷本来是为了证明在大剂量使用该药物时(高于标签指示的剂量)会提高患者的生存率,结果却正好相反,大剂量用药反而会使生存率下降。当这些研究结果被收集整合到所有临床汇总的数据库后,该药的安全评估开始出现明显的转变。2006年,由Cochrane协作组织所作的新的Meta分析发表时,发现用药患者的死亡危险要增加8%,但这时的Meta分析结果的统计学意义还不明显。这次刚发表的分析,是加入更多新的临床研究数据后分析的结果,已经具有统计学意义。

不过这些分析仍然没有搞清楚一个问题:如果按照药品标签所显示的剂量使用该药时是否仍然有危险,这个问题去年就曾经困扰过FDA的咨询委员会,估计这个月再次开会时还会提出同样的问题。

点评

EPO用于癌症病人因化疗引起的贫血症已经有15年之久。当初FDA批准允许其添加此适应症,主要是基于其治疗贫血的良好效果以及可以减少癌症患者输血的风险这一卖点。但是当时没有人问过这样的问题:这样的治疗,是否会延长病人的生命?如果说Meta分析的结果确实是增加病人死亡的风险,那么就应该禁止其用于癌症病人化疗引起的贫血症!因为在选择需要输血与可能死亡之间,谁都不会糊涂。

那么,为什么以前评审时,FDA和顾问委员会成员不关注此类关键问题呢?显然这是一大疏忽。FDA在评审抗癌药时,主要关注药品能否延长病人生命,但在审核癌症辅助治疗时,却忽略了在提高和改善病人生活质量的同时,是否也在延长或缩短病人的生命?FDA的审查指南需要改进,药厂增加癌症辅助用药适应症时也需要考虑这一关键问题。即使当时没有足够大的样本或足够长的观察周期,这些数据还是很关键的。对于这样的关键数据,政府应当强制要求,药厂也应该主动提供或尽快获取相关数据。

治病救人,毕竟保命还是第一位的。(责任编辑:江大红)

200分 EPO 促红细胞生成素

是最新上市的药,应该很贵,因为刚出国内还不能仿制,就是说没有山寨版的epo,只能是进口的,是处方类的药物,只有医生开处方签才能得到,药店里一般还没有,疗效好坏还不得知,因为一种药三期临床后上市需要多年的反馈才能判断好坏
像这种生物类制药(epo,人体能自然分泌产生)是不能随便服用的,尤其是目前还不成熟,像注射胰岛素也是多少年后才形成今天的制药水平的

医药生物的生物技术的三次革命

生物制药业的发展可以说与生物技术的科技革新息息相关。从1973年发明基因工程技术到1990年启动人类基因组计划,再到2001年后人类基因组测序完成之后的后基因组计划发展,经历了三次主要的生物技术革新。伴随着相关技术应用,产生了不同类型的生物制药产品,造就了三类不同的生物制药公司。
一、基因重组技术——产业化的开端
最早的一批生物制药公司主要利用基因工程的技术来获得蛋白质。由于科学家对部分蛋白如胰岛素、人体生长激素、EPO、tPA、第VIII因子等的加工过程以及可能存在的疗效了解较多,这类蛋白也就成了第一批生物技术公司开发的重点。我们称为“采用基因工程的加工技术来生产蛋白质”。
绝大部分重组蛋白药物是人体蛋白或其突变体,主要作用机理为弥补某些体内功能蛋白的缺陷或增加人体内蛋白功能,安全性显著高于小分子药物。虽然生产条件苛刻,服用程序复杂且价格昂贵,但对某些疾病具有不可替代的治疗作用,因而具有较高的批准率。同时,重组蛋白药物的临床试验期要短于小分子药物,专利保护相对延长,给了制药公司更长的独家盈利时间。这些特点成为重组蛋白药物研发的重要动力。
当今全球第一和第二的生物制药公司——安进(Amgen)和基因泰克(Genentech)
是这类生物技术公司的代表。安进由一群科学家和风险投资商于1980年创建,并于1983年在Nasdaq上市。但直到1989年6月,安进的第一个产品重组人红细胞生成素(EPO,商品名EPOGEN)才获得美国FDA批准。1991年2月,公司第二个产品重组粒细胞集落刺激因子(G-CSF,商品名NEUPOGEN)获得批准。EPO和G-CSF都是正常人体产生的蛋白质。在基因重组技术诞生前,EPO主要从贫血患者的尿和绵羊血中提取,提取率非常低,且极不稳定。1983年,人EPO基因克隆和表达的成功,使rh-EPO(recombinant human EPO)的制备成为现实。
经过二十多年的发展,EPO和G-CSF成为了全球商业化最为成功的生物技术药物之一,为安进带来了巨额的利润,公司也因此迅速壮大,成为世界上最大的生物制药企业。
全球第二大生物制药公司基因泰克(Genentech)最初也是进行生物技术“加工”。
1976年4月,一家风险投资公司合伙人与DNA重组领域奠基人、诺贝尔奖金获得者Boyer教授创建了基因泰克。公司开发出重组人胰岛素、重组人生长因子、生长激素抑制素、tPA、第VIII因子等蛋白产品,完成了最初的积累。
基因工程生产蛋白质药物是生物技术产业中最成功的领域之一,也是新药开发的重要发展方向之一。如今,重组蛋白药物虽然仅占全球处方药市场的7-8%,但发展非常迅速,1989年重组蛋白药物的销售额为47亿美元,到2005年达到410亿美元,几乎是1989年的9倍。
二、人类基因组计划——“生命密码”的破译
第二次技术革命发生在一个特殊的时刻,2001年。这是新千年的纪元,也是人类生物技术发展史上可谓空前绝后的一个里程碑。在这一年,以美国为发起者,在全球范围内以基因测序、基因组织结构分析为核心技术内容的人类基因组计划(HGP)基本完成。HGP于1990年正式启动,目标是对构成人类基因组的30亿个碱基精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。
人体中有万亿个细胞,每一秒都有数以百万计的化合物被合成,数千个相关生物化学反应发生。所有这些都依赖于每个细胞中的DNA精确地指导合成人体必需的建筑材料——蛋白质。在这些过程中,任何地方的一个小失误都会导致病态或者死亡。因此,引起疾病的基因可能是药品开发潜在的靶目标。即使在估计的3万-10万的所有人类基因中,只有5%-10%能够产生可行的药品研发靶位点,它仍然为制药业的药品研制开辟一个富饶的矿脉。毕竟,在过去的一百年中,药品研究的艰苦努力仅仅局限于500个左右靶目标的医学开发。
生命密码的破译促使诞生了新一类的生物技术公司,我们称它们为“将基因和分子生物学领域先进技术作为研究工具”的公司。1993年,曾供职于礼来、基因泰克和一家风投公司的Levin以850万美元的风险投资基金创立了作为基因组计划产业化的标志性企业——千年制药公司(Millennium Pharmaceuticals)。
千年制药建立起了一个技术平台,研究发现基因在疾病中的重要角色,主要盈利来源是技术转让以及与大型传统制药企业的合作研发。1997年,千年收购了一家生物技术公司ChemGenics,这提升了它寻找具有下游开发潜力药品靶位点的能力。
千年对上中下游的掌控能力使之成功地吸引了大合作伙伴,建立了合作联盟。例如1997年,拜尔和千年签署了一项协议,规定千年将负责为拜尔发现225种新的药品靶位点,而过去的一个世纪中,全球总共也只发现了500个药品靶位点。与拜尔的交易成为制药业和生物技术公司有史以来最大的联盟之一。
三、后基因组时代——从生命本质寻找药物
随着人类基因组计划完成,生命科学研究进入了后基因组时代,主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。在应用研究方面,蛋白质组学将成为寻找疾病分子标记和药物靶标最有效的方法之一。
目前的技术发展最具应用潜力的是蛋白质结构功能模拟技术。简单的讲,人们可以利用这一技术设计完成所需要功能的蛋白质分子。但是因为现有模拟方法涉及的计算机算法较为繁琐和初级,在大分子模拟的效率和准确性上都存在较大不足,导致应用面受到限制。但是小分子结构功能模拟在应用层面则初现端倪。比较有代表性的就是分子设计在治疗型单抗和治疗型疫苗药物中的应用。
从原理上来说,治疗型单抗更适合内源性疾病。内源性疾病指的是不由外源病原体引起的,因为机体基因的突变、异常表达或基因本身遗传易感导致正常生理功能无法实现而产生的疾病。比如说类风湿关节炎就是一种自身免疫性疾病。针对这样的疾病,因为异常基因和机体正常基因相似性很高,理论上讲只能使用具有高度专一性的单克隆抗体分子才能将它们区分,并随后引发不同的免疫反应将异常分子清除。
而治疗型疫苗更加适合治疗外源性的病原性疾病。致病因子一般都是外源性的病原微生物。这些病原分子能够通过一定的机制逃避机体免疫系统的识别和清除,并对正常的机体分子产生影响,破坏机体正常的生理平衡。治疗型疫苗的设计主要依靠模拟病原分子,并通过模拟计算病原分子与免疫系统受体分子的相互作用,对疫苗进行相关位点的改进,以打破病原分子逃避免疫系统的机制,产生强烈的免疫反应而清除病原。由于疫苗分子与病原分子在结构上有较高的相似性,因此疫苗分子对机体产生的毒性应该与病原分子相当,采用这种治疗方案不会因为产生额外的毒性而受到限制使用。
1、治疗型单克隆抗体
杂交瘤技术的突破使得科学家可以建立免疫细胞与永生化肿瘤细胞的杂交瘤细胞,制备特异的选择性抗体分子,即单克隆抗体(MAb)。单克隆抗体药物研究被视为后基因组时代基因蛋白功能研究与药物发现的命脉,已成为国际生物技术领域开发热点,是目前全球生物技术界最为注目的一个领域。
由于具有高度特异性,单抗即可被当作一种治疗药物,也可被用作传递药物的载体。单抗的临床转化率和批准成功率较高,例如治疗癌症的单抗药物批准成功率接近30%。因为生产条件的复杂性,单抗药物即使在专利保护到期后也不易被仿制,不易受通用名药品价格的威胁。更为重要的是,已上市的抗体药物具有很高的市场回报率。随着治疗性单抗市场高速发展,欧美市场上市的20个单抗药物中就有6个销售额过10亿美元的“重磅炸弹”药物。
Genentech在这个领域获得了极大的成功。1995年,Genentech收购了IDEC公司研制的名为Rituxan的新药,这是第一种成功瞄准癌细胞蛋白质的单克隆抗体药物,用于早期淋巴瘤的治疗,1997年获得FDA的批准。现在Rituxan已成为美国最畅销的药品之一。
随后,Genentech又相继开发了几种治疗性单抗并获得FDA批准上市,这些产品上市以来销售额快速增长,该公司也一举跃居世界第二大生物制药企业。
目前上市的单抗药物适应症主要集中在肿瘤和免疫性疾病方面。肿瘤治疗一直是抗体药物研发最活跃的领域,目前上市的抗体药物中用于肿瘤治疗的单抗占最大比例,进行临床II期或III期试验的候选抗体药物中40%用于抗肿瘤治疗。单抗对相应的抗原具有高度特异性,这是其靶向性抗肿瘤作用的分子基础,因此,确定并利用与肿瘤细胞相关的分子靶点是研制单抗药物的关键。
最早上市的单抗药物为鼠源抗体。由于人体内产生人抗鼠抗体(HAMA)反应,临床上面临一定的风险,因此人源化是单抗药物的发展趋向。
2、治疗型疫苗
治疗型疫苗(Therapeutic Vaccine)是另一类靶向治疗药物,是能够打破患者体内免疫耐受,重建或增强免疫应答的新型疫苗。治疗型疫苗能在已患病个体诱导特异性免疫应答,消除病原体或异常细胞,使疾病得以治疗。主要应用于目前尚无有效治疗药物的疾病如肿瘤、自身免疫病、慢性感染、移植排斥、超敏反应等。
与治疗型单抗相同的是,肿瘤治疗也是国际上治疗型疫苗的最主要应用领域,与单抗不同的是,治疗型疫苗多运用于病原体引发的肿瘤治疗。从产业化情况来看,治疗型疫苗的研发及商业化进程步履蹒跚,迄今为止,治疗型疫苗在开发过程中临床研究或商业推广失败的例子不胜枚举。尽管在一些以特殊研究对象为基础的小样本临床研究中,治疗型疫苗表现出了较好的疗效,但以美国这个全球最为重要的医药市场来说,至今只有两例治疗型疫苗获得批准。究其原因,主要在于:
第一,众多实体肿瘤缺乏特异性抗原,尽管目前已在实体肿瘤中发现了500多种肿瘤抗原,但只有少数抗原较为特异,且这些抗原免疫原性较弱。即便在癌症预防性疫苗研究领域,由美国Merck公司研制的专门针对宫颈癌和生殖器官癌前病变的癌症疫苗才于2006年9月获得FDA批准上市,其之所以取得较好的临床效果,与宫颈癌病因明确是分不开的,而宫颈癌也只是人类历史上少数几个找到明确病因的肿瘤之一。
第二,疫苗缺乏有效的抗原递呈。现有的疫苗在此环节上存在两个问题:一是进入的大部分疫苗与APC不能充分接触难以实现抗原递呈;二是即使有少量疫苗被APC捕获,也因抗原表达量甚微难以发挥有效的抗原递呈。
第三,如何打破机体免疫耐受。尽管目前通过采用共刺激分子修饰的疫苗有可能打破机体对肿瘤的免疫耐受,但目前尚缺乏有效的实验数据。
尽管如此,治疗型疫苗具有的靶向性治疗特点仍然吸引着许多公司跃跃欲试,目前全球有超过65家公司在研167个治疗型疫苗产品,特别是在肿瘤治疗领域,预防和治疗型癌症疫苗的出现被称为本世纪制药界最值得期望的突破之一。有研究报告显示,癌症疫苗市场2007年将达4.81亿美元,2012年将超过80亿美元。

什么是多肽药物

多肽蛋白药物随着生物技术的高速发展,多肽、蛋白质类药物不断涌现。目前已有35种重要治疗药物上市,生物技术与生物制药企业的发展也日益全球化。生物技术药物研究的重点是应用DNA重组技术开发可应用于临床的多肽、蛋白、酶、激素、疫苗、细胞生长因子及单克隆抗体等。据Parexl’s Pharmaceutical R&D Statistical Source Book报道,目前已有723种生物技术药物正在接受FDA审评(包括Ⅰ~Ⅲ期临床及FDA评估),700种药物处于早期研究阶段(研究与临床前),还有200种以上药物已进入最后批准阶段(Ⅲ期临床与FDA评估)。 生物技术药物的基本剂型是冻干剂。常规制剂尽管其疗效早为临床所证实,但由于半衰期短,需要长期频繁注射给药,从患者的心理与经济负担角度看,这些都是难以接受的问题。为此,各国学者主要从两方面着手研究开发方便合理的给药途径和新制剂:①埋植剂和缓释注射剂。②非注射剂型,如呼吸道吸入、直肠给药、鼻腔、口服和透皮给药等。缓释生物技术药物的注射制剂,是很有应用前景的新剂型,有一些品种如能缓释1至3个月的黄体生成素释放激素(LHRH)类似物微球注射剂已经上市,本文着重介绍这类制剂。 1 多肽、蛋白质药物缓释制剂的主要类型 多肽、蛋白质药物缓释制剂的研究与开发,从发展过程及剂型看,主要分埋植剂和微球注射剂两类。 1.1 埋植剂(implant) 1.1.1 细棒型埋植剂 埋植剂外形为一空心微型细棒,一头封闭,另一头开口,棒材为聚四氟乙烯等非生物降解聚合物。腔内灌入药物与硅胶(silastic,聚二甲基硅氧烷)混合物。埋植剂埋入人体皮下,药物通过硅胶基质开口处缓慢释放。美国内科医生手册(PDR)上收载了商品名为Norplant?的埋植剂,药物为左旋-18乙基炔诺酮,用于计划生育。该制剂每根直径2.4 mm,长34 mm,医生通过手术将6根细棒状物埋植在患者上臂内侧,药物可在体内按零级模式释药达5年,药物释完后再经手术取出。 1.1.2 微型渗透泵埋植剂 美国Alza公司20世纪70年代开发了外形像胶囊的埋植剂,该制剂埋植于皮下或其它部分,体液可渗透过外壳,溶解夹层电解层,使体积膨胀的夹层压向塑性内腔,促使药物溶液从开口定速释放。有不少生物大分子药物,如胰岛素、肝素、神经生长因子等作为模型药物的动物体内外研究报道。埋植剂对需要长期用药的慢性患者的治疗具有积极的意义,但它存在以下缺陷:①必须经手术途径植入。②制剂骨架材料为非生物降解聚合物,释药结束后还需经手术取出。③制剂在局部组织有刺激与不适感。 多肽蛋白药物评价方法: 1、液相色谱法 2、光谱法 3、电泳 4、生物活性测定与免疫测定 多肽蛋白药物一般处方组成:目前临床上应用的蛋白质类药物注射剂,一类为溶剂型注射剂,另一类为冻干粉注射剂。溶剂型使用方便,但需要在低温(2-8摄氏度)保存。

急!急!急!今天就要!高分悬赏!最近3年FDA批准上市的重组蛋白的性质和特点!

重组药物最大的一类是重组人促红细胞生成素,近5年销售总额近430亿美元;以后依次是重组胰岛素(除“重磅炸弹”外,总销售额用Novo Nordisk的相应产品销售额进行调整,因为该公司占有胰岛素市场的近50%份额)、β干扰素、GM-CSF、融合蛋白Enbrel以及α干扰素(图2)。由于重组血浆蛋白中没有单一“重磅炸弹”,所以没有列入“重磅炸弹”中进行比较,但其在2005年的总销售额已达到30亿美元[18,21-23]。
图2:2001-2005年“重磅炸弹”重组药物按类的销售情况。
(略)
时隔5年,占市场前3位的重组药物名次没有发生变化,只是由于Enbrel的快速增长导致各自的份额有所下降,Enbrel在2005年已上升至与GM-CSF并列第四名,α干扰素降至第六位。重组人促红细胞生成素的适应症已经从肾衰性贫血扩大至癌症或癌症化疗引起的贫血,并已有大量临床证据说明重组人促红细胞生成素能够促进癌症病人的生活质量[26],其领头羊位置在未来5年将更加稳固。重组胰岛素占市场份额下降,但今年上市的肺吸入型胰岛素以及长效胰岛素和基础胰岛素等会支持市场不会下滑。β干扰素治疗MS将受到抗体药物和小分子药物的挑战,发展可能会受到抑制。GM-CSF在临床使用中能够有效降低癌症化疗导致的中性粒细胞下降引发的感染,长效GM-CSF Neulasta一个化疗疗程使用一次,医生和患者接受程度很高,市场份额增长将一步加快。Enbrel近5年增长幅度较大,但会受到抗体药物的有力挑战。α干扰素与利巴韦林联合治疗慢性病毒性肝炎疗效显著[10,12],在获得肝炎大国日本批准后,其必会有更大的增长空间。明年,NovoSeven可望成为“重磅炸弹”,会带领重组血浆蛋白使整体市场份额格局有较大调整。其他类重组药物近5年内不会形成很大市场。
图3:2001和2005年重组药物分布比例的变化(左图为2001年)。
(略)
二、研发趋势
重组药物的迅速发展有着必然性,但要持续发展,有几个问题必须解决或优化,包括生产载体与产量、基因工程改造和翻译后修饰以及用药途径。
1、生产载体与产量
生产能力不足已经成为重组药物发展的瓶颈。以Enbrel为例,在1998年上市6个月内仅美国销售就超过对全球整年需求的预计[27],生产规模缺口很大。又如,HIV蛋白微球(microbicides)在局部使用可以防止HIV传播,但至今未进入临床研究,原因也是生产量不够 [28]。还有很多药物不仅发展中国家用不上,即便是发达国家也难以使用,估计有80%的血友病患者无药可用,主要是生产能力不足。生产能力不足也导致其价格不菲。
哺乳动物细胞和大肠杆菌(E.coli)是上市重组药物最主要的生产载体(见图4)。E.coli用于表达不需要翻译后修饰的重组药物,如胰岛素、生长激素、β干扰素和白细胞介素等。糖蛋白重组药物除刚批准上市的ATryn以外,全部在哺乳动物细胞中表达。Activase是第一个由哺乳动物细胞表达的上市重组药物,Epogen是第一个由哺乳动物细胞表达的“重磅炸弹”药。CHO细胞是最为常用的生产载体之一,其糖基化最近似人的糖基化结构,但糖基化产物是不均一的混合物。BHK细胞是第二常用的,另外,NSO、HEK-293和人视网膜细胞表达的蛋白也获得过批准。目前,哺乳动物细胞的产量亟待提高。上个世纪80年代,培养细胞密度最大达到2X106/ml,生产期7天,特异产物量为50mg/L。2004年的数据显示,细胞密度最大可达到10X106/ml,有效表达时间达到3周,表达量接近5g/L,是1980s的100倍[29],现在世界上最大的细胞发酵罐达到2万升。哺乳动物细胞生产体系还需要解决的其他问题包括无血清培养基、延迟细胞凋亡和糖基化改进等[30]。酵母细胞虽然能够糖基化,但是与人的糖基化有很大差别,为高度木糖醇型,表达的重组药物在体内半衰期很短并有潜在的免疫反应。因此,该领域最可能取得的突破是“人源化”P.pastoris酵母[31],能生产均一、与人糖基化相同的糖蛋白,靶蛋白的产量可达到15g/L,是哺乳细胞的3倍,对哺乳动物细胞表达体系形成有力挑战。
图4:上市重组药物生产载体的比例。
(略)
另一个正在取得突破的是植物表达体系(molecular farming),植物糖基化免疫原性低,不易诱发过敏,但有可能改变一些糖蛋白的功能。目前已用于10多个重组药物候选者的表达,其中1个已进入II期临床[28]。该体系尚需解决的问题有,进一步提高表达产量、通过“人源化”改造糖基化结构以及评价生产体系对环境的影响。已经有了突破的转基因动物生产方式至少在近期不会成为主流,其问题在于转基因高等哺乳动物乳液蛋白糖基化仍有别于人,可能导致抗原性的变化。欧盟人用医学制品委员会(CHMP)曾对ATryn上市提出过反对意见,理由是临床例数太少。另外,美国Genzyme公司重组人酸性α-葡萄糖酶(商品名Myozyme),原本在转基因兔奶中生产,最终换为CHO细胞生产并获得FDA批准上市[20]。转基因鸡的蛋青也可高水平表达重组药物,但目前尚无任何一个转基因鸡制备的药物被批准,主要问题仍是糖基化问题。当然,如果药物是口服和局部使用,抗原性问题将可能被忽视。
2、重组药物的基因工程改造和翻译后修饰
高度纯化的重组蛋白与人内源蛋白相同或高度相似,能避免出现免疫反应。但有30%左右重组药物是经过基因工程改变或经过其他手段进行翻译后修饰的(图5),也有文献指出现有上市重组蛋白药物种基因改造率达38%。改变蛋白的结构的目的是为了优化其药代动力学,但又不能弱化其生物功能及产生新的抗原性。
图5:上市重组药物的基因改造或翻译后修饰的比例
(略)
以重组人胰岛素为例,有多种基因工程改变序列的产品,主要是B28、B29和B30位的氨基酸改变。第一个经基因工程改变的重组人胰岛素为Lispro,是B28、B29之间的颠换,使产生双聚体和多聚体的可能性比野生型降低300倍[32],可以更快地释放入机体,起到速效的作用。缺失突变体也比较常见,ReFacto(重组凝血因子VIII,2005年销售额2.5亿美元)就是缺失突变体[33],对体内出现因子VIII抑制物的血友病患者有较好疗效。最近研究表明,Ankyrin重复(出现在erythrocytes等中,由33个氨基酸组成,有β折角反向平行和α螺旋)有助于加强重组药物靶标识别、膜蛋白的朝向性和稳定性[34]。但是,基因工程改变序列应非常谨慎,一些很小的变化就可能导致蛋白构象较大变化,从而诱发免疫反应。翻译后修饰主要包括脂化和PEG化。脂化是指将脂肪酸共价定点连接在蛋白上,从而增加药物与血清白蛋白的亲和力,延长在血清中的循环时间,发挥长效作用。PEG化分为单一PEG化和多点PEG化,通过降低血浆清除率、降低降解和受体介导的摄入,也能达到长效的目的,同时屏蔽抗原表位提高药物的安全性。PEG-干扰素α(Pegasys和PEG-Intron)和PEG-GCSF都是PEG化成功例子[35]。融合蛋白是指不同蛋白的不同功能域通过基因工程手段构建成一个蛋白,希望具有双功能或新的功能。虽然在这方面进行了大量的尝试,但是,25年来仅有3个被批准,提示其难度之大。外源蛋白更是只有1个成功例子。
3、给药途径的变革
绝大多数重组药物是注射给药或静脉途径,仅有2个是喷雾剂,如Pulmozyme即是一种液体喷雾剂。有些疾病如糖尿病、肾衰性贫血等都需要长期使用药物,注射或静脉途径的方式非常不便利,从而人们在给药途径上进行了大量的尝试。2006年,终于有了重大突破,Pfizre和Avents的肺吸入型胰岛素Exubera获得批准在美国和欧洲上市。作为干粉,肺吸入性剂型比液体喷雾剂稳定,剂量也好掌握。当然,Exubera 价格昂贵,以至英国有关部门拒绝使用,因为每周每个病人为此要多付出18美元。无论怎样,这将改变众多糖尿病患者的治疗方式,减除他们的痛苦,也激发了其它药物替代注射途径的研究热潮。我国有几家科研机构和公司研究透皮给药和肺吸入给药方式已经取得了可喜的进展。但是,应该指出,肺吸入型胰岛素在1999年就已经进入III期临床研究[36],至今才获得批准,难度可想而知。在这方面,最大的技术难点是给药剂量的精确度和药物稳定性等。
三、重组药物面临的问题和挑战
有分析家把重组药物市场喻为美丽的蝴蝶。但是,蝴蝶能飞多久呢?又会如何演变?换句话,重组药物市场是否进入了成熟期?近10年再没有出现对市场有较大影响的新产品类别,R&D投入相对稳定(生物公司2002-2004年连续3年的R&D总额均稳定在150亿美元[37])都是市场过于成熟的表现,将使持续发展受到限制,这是来自其自身的挑战。客观分析其他治疗技术的发展,我们认为重组药物市场在近期不会遇上真正意义上的挑战,但潜在的威胁确实存在。
1、其他治疗药物或方法对重组药物市场的挑战
重组药物的很多适应症是由于单基因或明确的简单原因造成的某个蛋白的缺乏或功能丧失,如血友病和I型糖尿病,非常适合基因治疗。设想一下,如果能在人体内可调控地表达重组药物的基因,重组药物市场将走向何处?基因治疗在短期内是否会较大地影响重组药物市场?事实是,从1989年起,约1140个基因治疗产品进入临床研究,仅有少数几个进入临床III期研究[20],而且没有1个在美国和欧洲上市,并有许多因为临床研究出现意外死亡而终止。目前,世界上只有我国2003年11月批准上市了以人p53基因为基础的基因治疗“今又生”。美国同类产品早已进入3期临床,迟迟未能上市的原因是美国FDA批准的基础是5年存活率的变化,而我国是以肿瘤变小为批准依据的。基因治疗要在以下关键领域取得突破才可能大批量的进入市场:目标基因传送的特异性、稳定性、可控性和抗原性。可以预见,5-10年内基因治疗难以对重组药物形成有力挑战。干细胞诱导生成胰岛(样)细胞的方法也没有得到预期的进展,走向临床的路可能比基因治疗更为遥远。抗体药物或aptamer是以特异靶向结合和抑制被结合物为作用机理的,而绝大多数重组药物是以补充蛋白(功能)为作用机理的,所以无论是抗体药物还是aptamer仅会对抑制作用为机理的重组药物产生严重挑战,如Enbrel和β干扰素。
2、重组药物仿制药时代对重组药物市场格局的影响
目前药物市场的规则是:新药专利保护期过后,将有通用名药物上市,其价格是新药的15%左右,极大影响药物利润。如,连续5年的处方药销售亚军Zocor(小分子降血脂药)的专利保护今年到期,其通用名药将不仅影响Zocor的价格也将使降血脂药物整体价格下滑。有几种在1980s的重组药物已经丧失或即将丧失专利保护,预计未来5年将有价值100亿美元以上的重组药物将失去专利,会不会涌现出一批重组药物仿制药颠覆重组药物市场?欧洲在2006年首次批准了2个重组药物仿制药上市,为人生长激素的2个不同版本,Omnitrope和Valtropin,这是否预示重组药物仿制药时代的到来?实际上,重组药物的情况远比小分子药物复杂。欧洲有生长激素、Epo、GM-CSF和胰岛素仿制药物的指导原则,但是对结构和加工较为复杂的PEG蛋白和凝血因子还没有考虑。美国如何发展重组药物仿制药还存在很大争议,美FDA还没有发布有关的指导原则。最主要的考虑是安全性,与小分子药物不同,即使是同一个基因在同种细胞中表达并使用类似的加工方式,重组药物仿制药也难以保证与原创药完全相同。考虑生产成本和加工的复杂性,重组药物仿制药对现有市场的影响还不明显。但是,重组药物仿制药时代一定会到来,并会对重组药物市场格局产生重大影响。
3、临床安全存在风险因素
如同其他药物一样,重组药物也存在引发副作用的风险。首先,重组药物的功能并不是单一的,或者其作用程度很难精确控制,有可能导致严重的副作用。例如,有专家认为用重组促人红细胞生成素纠正癌症病人贫血的同时可能促进肿瘤的生长[26]。类似的,重组人生长激素会刺激肿瘤生长、增加血脂升高和糖尿病发病的风险。而应用tPA治疗“中风”会引起出血倾向,有研究提示与血清基质代谢蛋白酶9(MMP9)关系密切[33]。其次,患者出现针对重组药物抗体,原因主要是糖基化差异和改构产生的新抗原表位(尤其是T细胞表位),其临床表现类型和程度难以预料。最为常见的是造成治疗效果不好甚至无效,严重时会出现致命合并症,如抗重组促人红细胞生成素抗体导致红细胞再障(RBCA)[6],原因不明。临床安全风险是影响新药审批速度的直接因素,也势必会影响市场发展。
四、几点思考
虽然重组药物的发展面临挑战,但近期仍将以较快的速度发展,2020年前后有可能成为重组药物发展的分水岭,具体时间取决于自身的瓶颈问题是否能解决,替代疗法是否能够出现。无论如何,我们现在面临的可能是最后的发展机遇。我国重组蛋白研究非常普遍,任何一个有规模的研究机构都有基因克隆和突变的平台。许多制药企业也都有大规模细胞培养和纯化的体系,具备研发和生产重组药物的条件。但是,要抓住这次机会,必须冷静地分析形势,高起点地开展工作。
1、客观选择重组药物种类作为研发起点
重组人促红细胞生成素、胰岛素、β干扰素、GM-CSF、α干扰素、某些重组血浆蛋白等占领了重组药物绝大部分市场,近10年仅有Enbrel突破了上述蛋白种类。应该强调的是,重组药物的特征决定了这些蛋白种类是市场的主宰,是临床疗效和安全性以及市场潜力和规模的集中体现,“重磅炸药”的销售额占有重组药物市场的比重连年增大就是佐证。所以,要想得到市场的较大份额,选择上述类别的蛋白作为药物研究起点是合理的。重组人蛋白酶也有较好的发展机会。融合蛋白是重组药物中少有以特异靶向结合以及抑制为作用机理的,符合癌症、免疫性疾病的治疗发展趋势,然而,25年的经验告诉我们,融合蛋白成为治疗性蛋白的难度较大。外源蛋白由于抗原性问题要等待给药途径的突破,否则机会很小。
2、以基因工程或其他修饰方法改造现有重磅炸弹为突破口
我们不难发现,“重磅炸弹”中一半以上是经过改造的,“重磅炸弹”存在新旧产品的转变,比如,Neupogen向Neulasta转变;PEG-Intron A正在迅速取代Intron A,而Pegasys很快地遏制了PEG-Intron A的发展势头。这提示我们,尽管在市场相对成熟及饱和的情况下,“重磅炸弹”的突变体仍然有很大的机会。当然,这种机会源于我们对发病机理、蛋白质化学和生理功能的透彻理解,也必须有很好的技术平台对改变后的蛋白进行系统、准确的功能和安全评价。无疑的,改变“重磅炸弹”的给药途径,将站在重组药物市场的前沿,也会为未来的抗体药物市场提供平台。
3、在生产方式和效率上取得突破参与国际竞争
只有足够的生产能力才能够占领市场和使生产成本下降。但是,建一个大型哺乳动物细胞的生产基地,大约需要5年时间和2-4亿美元投资。所以,根据我国的具体条件,可以建立中等规模哺乳动物细胞培养基地,承包国际上“重磅炸弹”的生产,目前,承包加工占总生产能力的25%,也是一个大市场。同时,从酵母的糖基化改造、植物和转基因动物的表达体系构建入手,快速形成我国特有的优势,在国际竞争中脱颖而出。即使2020年前后重组药物被其他来疗法所取代或部分取代,所建立的生产平台仍可用于新抗体药物和重组疫苗的生产,整体效益是显著的。

本文地址:http://www.dadaojiayuan.com/zhongyizatan/31798.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章