2016年10月25日讯 最近,细胞疗法的专家、加州大学旧金山分校(UCSF)教授、霍华德?休斯医学研究所的研究员,兼初创公司Cell Design Labs的科研创始人Wendell Lim博士推出了一项有关T细胞免疫疗法的崭新技术。这一成果发表于近期的《Cell》期刊上,报导了一种使用synNotch受体技术,精细调控基因开启或关闭,特异性启动T细胞免疫反应来靶向肿瘤细胞。
通过长期进化过程,人类的免疫细胞可有效监控和感知身体异常。致病菌入侵或者机体内的动态平衡都可激发免疫响应,启动一系列的保护和修复程序。诸如说,T免疫细胞在身体内循环、探知病源,并启动有力的响应效益来消除感染、炎症或癌症细胞。 T细胞也具备产生长期记忆的能力,可长久防止复发产生。这些应对疾病的强大能力,使得T细胞成为细胞疗法领域极具吸引力的一大技术平台。
目前,在工程化T细胞疗法领域,治疗癌症的重大进展都集中在“指导”T细胞的自然应答去针对疾病细胞。以此为方向,科学家们使用肿瘤特异性T细胞受体(TCR)或嵌合抗原受体(CARs)技术把T细胞改造成为可识别疾病新抗原的“新型”免疫功能细胞。虽然这些“重新定向”指导T细胞功能的疗法已经在部分癌症中取得了一些成功,其有效性仍受到了T细胞内源反应机制性质的大幅限制:首先,T细胞的免疫反应程序是多样化的,而且并不是所有方面都在特定疾病治疗方案上面具有益处。特别是某些免疫反应本身是有毒副作用的,在某些情况下可能和疾病本身一样危险。此外,自然的T细胞反应程序缺乏适应特性。例如,当工程化T细胞被重新定向到识别肿瘤细胞之时,T细胞具有非常有限的能力去克服肿瘤的免疫抑制微环境。
对于T细胞疗法的未来,最好能够塑造出由“指定的疾病环境”诱导激发出的新型抗肿瘤行为,驱动特定的免疫反应程序:即可最小化毒性,也可扩展治疗功效。最近开发出的synNotch受体技术提供了一种兼顾灵活定制和诱导免疫细胞反应的潜在方法。 SynNotch受体包含了天然的细胞间信号传导受体Notch的核心调节结构域,但具有合成性的胞外识别结构域和合成性的胞内转录结构域。当接合同源抗原时,类似于原生型的Notch活化机制,synNotch受体可经历诱导性跨膜区域剪切,从而释放胞内转录区域进入细胞核,结合同源上游顺式激活子来激活受调控靶向基因的表达。因此,synNotch信号回路可被利用产生“合成性”的细胞反应程序:使用特定的抗原识别结合来驱动某一特定的基因表达组合。
正是借鉴已建立的SynNotch受体技术,Wendell Lim博士的研究团队在人源原代T细胞中建立了能够检测相关肿瘤疾病的synNotch受体,以及关联特定基因调控的活性。这些经synNotch受体技术改造的T细胞具备强大且高度受控的“自定义”行为。研究数据表明,synNotch受体可以驱动的T细胞以产生自定义的细胞因子谱系,限定性的细胞分化途径,和局部递送的天然兼合成的治疗效益(例如细胞毒性蛋白质、抗体、双特异性扣合、免疫刺激剂和免疫抑制剂)。这些特定性的细胞行为绕过所有典型性T细胞活化的要求。
Lim博士说道:“我认为这是一个非常重要的技术。增强T细胞功能,超越现今CAR-T疗法相对有限的应用已经进入后期发展阶段了。”他很看好该技术从小鼠往人体实验的发展,重编程的工程化细胞可以成为治疗癌症以及自身免疫性疾病的创新方法。
目前Cell Design Labs公司已经募集了3440万美元,计划一两年内步入临床研究,尝试探索来自自体细胞的人体化治疗。
细胞毒性T淋巴细胞(CTL)是机体抗肿瘤和抗病毒感染的关键效应细胞,CTL通过T细胞受体(TCR)特异识别靶细胞表面MHC-I 与抗原多肽形成的复合物,进而释放穿孔素、颗粒酶等生物活性物质对靶细胞进行溶解。鉴于CTL在治疗肿瘤和病毒性疾病中的潜在作用,对CTL的基础与应用研究备受关注,大多研究集中于对TCR基因的改造。随着分子生物学的发展,TCR基因克隆、转导技术已较成熟,研究方向主要是如何保证TCR基因高效、正确表达组装成为具生物活性的分子。
机体免疫防御主要由体液免疫与细胞免疫两大系统构成,其中以CD8+T淋巴细胞介导的细胞免疫在抗肿瘤过程中发挥重要作用。CD8+T从静息性T细胞活化为具有特异杀瘤作用的细胞毒性T淋巴 细胞(cytotoxic T lymphocyte, CTL)经过如下3个关键步骤:第一步是抗原加工与提呈,主要由专职抗原提呈细胞树突状细胞(dendritic cell, DC)负责; 第二步是识别与活化,CD8+ T细胞通过其表达的T细胞受体(T cell receptot, TCR)特异识别DC提呈的MHC-Ⅰ-多肽复合物,接受T细胞活化的第一信号,DC表面丰富的免疫共刺激分子给予T细胞活化的第二信号;第三步是识别与杀伤,活化的CTL通过TCR特异识别瘤细胞表面MHC-1-多肽复合物,释放穿孔素和颗粒酶等生物活性物质溶解瘤细胞,或通过Fas-FasL途径诱导瘤细胞凋亡。CTL的TCR对肿瘤抗原的识别是发挥其效应的基础,抗原识别的特异性取决于TCR结构的多肽性。越来越多的研究小组利用现代分子生物学技术克隆能识别特定抗原表位的TCR基因,构建TCR基因病毒载体再转染外周CD8+ T细胞,将之修饰成为能识别特定靶抗原的CTL。体外大规模扩增经TCR基因修饰的CTL,将为肿瘤及传染性疾病提供新型、特异的治疗手段。
TCR是T细胞表面能够特异性识别抗原表位和介导免疫应答的分子,TCR的多态链依编码基因不同命名为α、β、γ、δ链,分别形成αβTCR和γδTCR。 人外周血中约95%为γδTCR,约5%为αβTCR。
TCR分子是由两条糖基肽链通过二硫键组成的异二聚体。所有α、β、γ、δTCR肽链均可分为胞外、 跨膜(TM)和胞质(Cy)3部分。胞外部分又分为可变区(V)、高变区(D)、结合区(J)和恒定区(C)。α链 由V、J、C基因编码,β链由V、D、J、C基因编码。两链不同区域等位基因的重排决定了TCR的多态性,赋予了T细胞识别不同抗原的巨大潜力。TCRα和β肽链可变区存在4个氨基酸高变区(hypervariable region, HVR),亦称互补决定区(complementarity determining region, CDR),其中CDR1、CDR2,CDR3又称为超变区,是抗原特异性结合部位。TCR多态性主要由CDR3决定。
克隆TCR基因的关键是分离到具有高亲和力的识别抗原肽的T细胞克隆。已经有多个课题组利用不同技术从不同来源获得CTL克隆。Morgan等从黑色素瘤患者的肿瘤浸润性淋巴细胞中分离出能识 别MART-1抗原表位的T细胞克隆。Zhang等从慢性丙型肝炎患者外周血中分离得到HCV特异性的CTL克隆。Morgan等运用HLA-A2限制性多肽体外致敏预先免疫该多肽患者的外周血淋巴细胞 (peripheral blood lymphocyte, PBL),然后用有限稀释法获得CTL克隆。Varela-Rohena等运用噬菌体展示技术分离抗原特异性TCR。利用聚合酶链式反应(polymerase chain reaction, PCR)、反转录PCR (reverse transcription PCR,RT-PCR)技术克隆上述TCRα、β链全长基因。利用基因扫描技术对TCR CDR3区域进行分析,了解其可能存在的亚家族。 Meyerhuber等运用此方法从HER2(369-377)特异性CTL中成功克隆了TCR基因。
目前在TCR基因转染过程中报道较多的是运用逆转录病毒载体。逆转录病毒载体有多方面优势,感染细胞范围广,不仅适用于单层培养的细胞,而且适用于悬浮培养的淋巴细胞;机体对载体产生的免疫反 应较低,在宿主内可以稳定遗传;往往以低拷贝整合,避免了基因重排;经特殊构建的反转录病毒载体是缺陷型的,比较安全;选择不同的外壳蛋白进行包装,可赋予病毒特定的宿主选择性,从而达到靶向导入的目的。
Morgan等从黑色素瘤患者的肿瘤浸润淋巴细胞(tumor infiltrating lymphocyte,TIL)中获得能识别 MART-1抗原表位的CTL克隆,从中克隆到TCR基因,利用逆转录病毒载体将该基因转导入至人外周血 T淋巴细胞,经体外扩增后治疗17例Ⅳ期黑色素瘤患者,15例患者在治疗2个月后循环T细胞数量至少增加了10%,2例患者病情得到控制,在18个月内未复发。Parkhurst等将癌胚抗原(carcino-embry-onic antigen, CEA)特异性TCR构建入逆转录病毒载体转导人外周血淋巴细胞,在TCRα链CDR3区域引入单核苷酸突变,增强了TCR的亲和性。临床试验对3例转移性结直肠癌患者进行治疗,结果所有病例血清CAE水平均有所下降(74%~99%)。
目前较常用的逆转录病毒载体为Moloney小鼠白血病病毒改构的各类逆转录病毒载体,理论上它能转染几乎100%的靶细胞,但实际的转染效率远低于此。近年来人们通过各种改良方法不断提高逆转录 病毒载体转染效率。Yang等运用高速离心法浓缩病毒,4℃,6000rpm,过夜,可使病毒滴度提高50~100倍,进而提高转染效率。研究人员利用逆转录病毒载体将TCRαβ基因转导人初始T细胞,发现在相同的病毒滴度下,以骨髓瘤病毒(myeloproliferative sarcoma virus,MPSV)或鼠干细胞病毒(murine stem cell virus, MSCV)为基础载体比以小鼠白血病病毒(murine leukaemia virus, MLV)为基础的载体有高转染效率和高TCR表达。
改良的逆转录病毒载体已被多个研究组用于不同肿瘤相关抗原特异性TCR基因转移中。但逆转录病毒只能感染分裂期细胞,容纳外源基因的DNA片段长度不超过8000bp,病毒滴度低,有的反转录病毒可能具有激活癌基因的危险。
慢病毒载体其优点在于可有效转染分裂和未分裂细胞;能稳定整合到靶细胞的基因组中;可转移约 8000~10000bp基因片段;能持久稳定表达外源基因,不易导致基因沉默;没有整合位点偏好性。
Yang等将识别MART-1和gp100的TCR基因重组入VSV-G假型第3代慢病毒载体,转染外周T细胞,转染细胞出现了特异性抗瘤活性,包括释放γ干扰素和溶解瘤细胞。2010年该课题组运用CD3抗体和PBL饲养细胞预刺激T细胞,明显提高T细 胞转染效率,12 d内CD8+ T细胞数量扩增达600倍,且具有特异性杀伤活性和记忆性。Stauss等对比逆转录病毒载体与慢病毒载体转移WT-1特异性TCR研究表明,慢病毒载体相对比较安全,可获得较高转染效率。Canderan等设计了杂合非小细胞肺癌特异性TCR,该TCR是由人TCRV区和鼠TCRC区嵌合而成,后将该TCR构建入慢病毒载体转导T 细胞前体,产生特异性CD4+ CD8+可稳定表达杂合TCR,T细胞体外增殖良好,并可特异性识别非小细胞肺癌。虽然慢病毒载体有较多优势,但存在有毒力恢复、垂直感染等潜在的安全隐患,仍需要临床更多的深入研究。
将外源基因直接用理化方法转导入靶细胞。常用的转导方法有电穿孔技术、磷酸钙共沉淀法、脂质体介导法、显微注射法等,其对外源基因片段大小无要求,安全性很高,但转染效率很低。
TCR基因转染的载体主要还是病毒载体,但研究人员一直都在尝试寻找更理想载体系统。值得一 提的是,“睡美人”(sleeping beauty, SB)转座子系统已被应用于TCR基因转移过程中,Peng等报道, 该方法TCR转导效率可与病毒载体相媲美,但该系统缺陷在于存在整合位点偏好性,这将是其应用于临床前亟待解决的问题。
研究人员将TCRα和β两条链分别构建入两个独立病毒载体中,因为编码CR单链基因的小病毒载体容易包装,可获得较高的病毒滴度。但为了得到功能性的TCR,含有α和β两条链的两个病毒颗粒必 须同时转染同一个T细胞。这种双感染容易增加插入突变的风险,此外,引入TCR单链易形成内源与外源TCR链的杂合体。Dossett等用不同的启动子来调控TCR两条链的表达,其中TCRα链受控于一 个长末端重复序列(long terminal repeat, LTR)元件,该元件也驱动报告基因neo的表达,TCRβ链的表达由杂合HTLV-I/SV40启动子SRα来驱动。该方法易受启动子的干扰,导致TCR表达下调。Wang等将HC/2G-1 TCR两条链由一个内部核糖体进入位点(internal ribosome entry site, IRES)原件连接,在一般启动子启动下作为一个单一转录盒来表达。IRES原件可以保证TCR两条链同时表达,但IRES5′端基因通常较3′端基因表达量高,会导致突变的发生。 Chinnasamy等将TCR基因两条链通过一个源自 微小RNA病毒的肽原件2A(2A peptide, p2A)来进行连接。这种连接方式可以产生一条单一的编码TCRα和β链的mRNA。翻译时,核糖体可跳过2A肽序列,从而产生两条单独的肽链:TCRα-2A融合蛋白和甘氨酸TCRβ,这种连接方式可以等量表达TCRα和β链,此外肽序列要比IRES原件短,构建的病毒载体较小,容易包装,可获得较高病毒滴度。
TCR组装和表达是一个复杂的过程,在细胞表面进行表达之前,TCRα链和β链首先形成异源二聚体,然后与CD3复合物在内质网结合,最终TCR CD3复合物由内质网释放后转移至细胞膜,在这个过程中会有诸多因素影响TCR的表达效率。
密码子优化是指用人类基因组中常见的同义密码子置换非常见密码子。已有证据表明,密码子优化的TCR基因在转导T细胞中表达水平比野生型TCR基因有所提高,从而增强其体内功能。但是,密码子优化可能产生免疫源性TCR,此过程也可能会伴随多肽序列的改变产生另一种开放读码框,有一定风险。
TCR基因转移载体构建时最好使用单病毒载体,可以同时编码TCRα链和β链,这样可以防止插入突变和转导T细胞仅表达引入的1条链,可以减少引入链与相应内源性TCR链误配的风险。如果存在TCR其中1条链供应不足的情况,会削弱TCR异源二聚体的聚合细胞表面表达。近年来,研究人员运用IRES序列或者P2A,连接TCRα链和β链构建载体,很大程度上克服了载体配置造成的两条链表达不均衡的问题。
有效的细胞表面TCR表达需要稳定的TCR CD3复合体构建。没有CD3的情况下,TCR不能聚合而被降解。因此向T细胞内引入外源性TCR时,CD3分子的存在是主要限速步骤。竞争可降低引入性TCR细胞表面表达。 引入性TCR的表达水平通常比内源性TCR低,内源性TCR可以削弱转导T细胞对低浓度TCR识别抗原的反应活性,这一结果验证了引进TCR与内源性TCR竞争有限的CD3分子。 Sachiko等通过小干扰RNA(small interfering RNA, siRNA)的表达使内源性TCR沉默以提高外源性TCR基因的表达和活性。最近研究表明,带有编码TCR α和β链基因载体与另一个编码CD3γ、δ、ε、ζ基因的载体进行双重转导CD8+T细胞,可以提高CD8+T细胞活性。
有研究表明单独α或β链转导T淋巴细胞可导致外源性TCR链和内源性TCR链混合二聚体的形成。外源性TCRα或β链与内源性TCRα或β链的误配导致目标TCR自身配对减少,从而影响TCR的亲和性。此外,误配二聚体的形成可能会导致自身免疫反应等安全问题。Thomas等将TCR恒定区鼠源化,或进行半胱氨酸修饰产生分子间二硫键,发现均可提高外源性TCRα和β链的正确配对。 Voss等在TCRα和β链恒定区插入一对相互作用氨基酸,改变TCR恒定区二级结构(从“knob-into-hole”构象变为“hole-into-knob”)来提高两条链的正确配对。
尽管目前TCR基因修饰CTL的基础与临床研究均取得较好进展,但仍存在一些问题,如功能性TCR的正确表达、TCR表达效率、TCR基因修饰CTL的亲和力与体内有效性和存活时间、临床安全性等均需要深入研究。
2月4日是世界抗癌日,今年的活动主题是“关爱患者,共同抗癌”。癌症已经并将持续成为威胁人类安全 健康 的“杀手”。世界抗癌日发起于2000年,目的是加快癌症研究、预防及治疗领域的进展。
2020年新发癌症病例1929万例
世界卫生组织国际癌症研究机构 (International Agency for Research on Cancer, IARC)发布数据显示,2020年全球新发癌症病例约1929万例,全球癌症死亡病例996万例。其中,中国新发癌症病例457万例,癌症死亡病例300万例,新发病例和死亡病例均为全球第一,而发病率和死亡率最高的癌症类型分别是乳腺癌和肺癌。
科技与癌症的较量" img_height="556" img_width="890" data-src="//imgq5.q578.com/df/0205/608af6a3fb032a7d.jpg" src="/a2020/img/data-img.jpg"> 近年来,细胞 科技 在抗癌道路上取得了很大的进展,基于免疫细胞的CAR-T疗法被认为是人类攻克癌症的新里程碑。在过去,说到细胞 科技 与癌症的治疗,人们最先想到的可能是造血干细胞治疗白血病。 随着 科技 的发展,人们发现,除了造血干细胞,其他类型的干细胞以及免疫细胞也能用来对付癌症,细胞 科技 给癌症治疗带来了更多的可能性。
干细胞的较量--多种癌症的新突破口
在过去的几十年中,干细胞生物学的不断发展,为治疗癌症患者提供了新的潜在方法。
干细胞具有独特的生物学特性,包括自我更新,定向迁移,分化和对其他细胞的调节作用,这些作用可用作再生医学、治疗载体、药物靶向和免疫细胞的产生。
科技与癌症的较量" img_height="762" img_width="1108" data-src="//imgq5.q578.com/df/0205/4ecb5894e6641897.jpg" src="/a2020/img/data-img.jpg"> 在以往的报道中,研究人员通过移植骨髓来源的干细胞使骨髓损伤或免疫系统受损的骨癌患者恢复正常的骨髓造血功能[2]。对于癌症患者来说,诱导多能干细胞所产生的T细胞能够特异性的杀灭癌细胞。
另一方面,由于干细胞的定向迁移能力,干细胞可作为载体将治疗药物递送到肿瘤部分,实现对肿瘤细胞的精准、定点清除。目前,间充质干细胞移植已成为一种有前景的治疗骨癌的方法。
除了干细胞在癌症治疗过程中的直接治疗作用之外,近年来,干细胞外泌体成为癌症治疗中另外一个热点。
间充质干细胞来源的外泌体作为其胞内信号的重要组成部分,在肝癌等疾病治疗的研究中具有与间充质干细胞相似的作用:克服复杂的体内传送障碍而被受体细胞吸收、无免疫排斥反应和致瘤性且易于存储。
动物实验研究发现在大鼠肝癌模型中,静脉注射间充质干细胞外泌体后,MRI检测结果显示肿瘤逐渐缩小,血清中的自然杀伤细胞表面标志物含量升高。更多间充质干细胞外泌体在肝癌及肝脏转移性肿瘤中的应用如下表所示。
科技与癌症的较量" img_height="592" img_width="1108" data-src="//imgq5.q578.com/df/0205/b4446c92269aa0e3.jpg" src="/a2020/img/data-img.jpg"> 免疫细胞的较量--癌症治疗的新里程碑
基于免疫细胞的疗法被认为是主动免疫疗法,它利用患者自身的免疫系统来治疗癌症。
免疫细胞疗法通常需要从患者血液中提取淋巴细胞,“训练”特定的免疫细胞以在体外识别癌细胞,然后将经过“训练”的细胞输回患者体内。然后,注入的细胞可以直接杀死患者的恶性细胞,或者激活其他免疫细胞进行癌细胞的杀灭。
科技与癌症的较量" img_height="434" img_width="640" data-src="//imgq5.q578.com/df/0205/b979f47f124d25cc.jpg" src="/a2020/img/data-img.jpg"> 这些细胞是通过称为白细胞分离术的过程从患者体内分离出来的,而将其输回患者体内的过程称为过继细胞转移(ACT)。
最常用于癌症免疫治疗的淋巴细胞是自然杀伤(NK)细胞,细胞因子激活的杀伤细胞(CIK),细胞毒性T淋巴细胞(CTL)和树突状细胞(DC)。这些细胞可能来自患者(自体)或供体。目前,自体治疗比基因治疗更受欢迎,因为自体细胞减少了移植物抗宿主病的发生。
近年来,最为火热的肿瘤免疫疗法莫过于CAR-T细胞治疗。CAR-T免疫疗法是一种利用基因工程技术修饰患者T细胞使其能够表达嵌合抗原受体,以特异性识别并杀死癌细胞发挥抗肿瘤作用,是目前ACT治疗的研究热点。CAR-T细胞疗法已在血液系统肿瘤中获得成功,靶向CD19的CAR-T细胞已在多个地区获批应用于急性B淋巴细胞白血病及某些B细胞淋巴瘤的治疗。
这种疗法开启了人类癌症治疗的新纪元。那么对于实体肿瘤,免疫细胞疗法的较量又将是如何呢?
不久前,全球首个靶向性的CAR-T细胞治疗晚期肝癌的Ⅰ期临床研究结果公布,治疗的安全性和有效性均获得了令人欣喜的结果。接受该治疗后患者耐受性良好、安全性基本可控,罕见严重毒副反应,并初步显示出较好的临床获益[4]。
科技与癌症的较量" img_height="298" img_width="399" data-src="//imgq5.q578.com/df/0205/2e1c09d02b5d22b3.jpg" src="/a2020/img/data-img.jpg"> 胃癌是高发病率的癌症之一,现有的放化疗及手术治疗方法对于晚期胃癌患者的效果欠佳。一些化学药物疗法可通过促进免疫细胞浸润到肿瘤中并通过诱导肿瘤细胞的免疫原性死亡来促进肿瘤抗原的释放而增加免疫疗法的效果。
所以,化疗和CIK疗法联合治疗似乎可以增强疗效。治疗性胃切除术后的Ⅱ/Ⅲ期胃癌患者CIK疗法联合化疗作为辅助治疗的疗效评估显示,与单纯的化疗组相比,患者OS明显延长[5]。在晚期的胃癌病例中, 一些临床研究也证实了化疗加CIK疗法对患者的生质量有很大的提高。
细胞 科技 的整体较量--人类抗癌的一把利剑
肿瘤的形成是一个极其复杂的过程,在多种致癌因素作用下和长期处于不良的组织微环境中,细胞发生癌变并产生肿瘤,严重威胁人类生命 健康 。
近年来,细胞疗法在癌症的临床前和临床治疗中取得了一系列较为可观的结果,不过依然面临着众多挑战,未来仍需开展更大规模的临床研究,进一步探讨抗癌机理,进一步探讨细胞 科技 在实体肿瘤中的效果等等。
干细胞和免疫细胞疗法的发展开辟了癌症治疗的新途径,对癌症的发生机制的深入发掘和药物制造与筛选提供更多可能。
参考文献:
[1] Chu D T, Nguyen T T, Tien N L B, et al. Recent progress of stem cell therapy in cancer treatment: Molecular Mechanisms and Potential Applications. Cells, 2020, 9(3): 563.
https://doi.org/10.3390/cells9030563
[2] Morishita T. 2006. Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patients' mesenchymal stem cells. Artificial Organs.
https://www.ncbi.nlm.nih.gov/pubmed/16433845
[3]朱丹,李汛.间充质干细胞来源的外泌体在肝癌治疗中的研究进展.中国肿瘤临床,2020,47(20):1055-1060.
https://kns.cnki.net/KXReader/Detail?TIMESTAMP=637478938491981250&DBCODE=CJFD&TABLEName=CJFDLAST2020&FileName=ZGZL202020008&RESULT=1&SIGN=DlsXwzULH29FI21MHw%2bL0Sy5zbM%3d
[4] Shi D, Shi Y, Kaseb A O, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: Results of phase I Trials. Clinical Cancer Research, 2020, 26(15): 3979-3989.
https://clincancerres.aacrjournals.org/content/26/15/3979.abstract
[5] Zhao H, Fan Y, Li H, et al. Immunotherapy with cytokine-induced killer cells as an adjuvant treatment for advanced gastric carcinoma: a retrospective study of 165 patients. Cancer Biotherapy and Radiopharmaceuticals, 2013, 28(4): 303-309.
https://doi.org/10.1089/cbr.2012.1306
[6]索晓敏. 胰腺癌干细胞外泌体激活树突细胞用于癌症免疫治疗的研究.河北大学,2020.
https://kreader.cnki.net/Kreader/CatalogViewPage.aspx?dbCode=cdmd&filename=1020752712.nh&tablename=CMFD202002&compose=&first=1&uid=WEEvREcwSlJHSldSdmVqM1BLVW9RNjZjNjlVOXM3c0lNREE3SlZMUFhnWT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!
本文地址:http://www.dadaojiayuan.com/jiankang/287778.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:602607956@qq.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
上一篇: 宫颈糜烂一度可以自愈吗
下一篇: 外阴瘙痒有异味